What sets George Cody apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques to analyzing the organic processes that alter sediments as they mature into rock inside the Earth and the molecular structure of extraterrestrial organics.

Wondering about where we came from has occupied the human imagination since the dawn of consciousness. Using samples from comets and meteorites, George Cody tracks the element carbon as it moves from the interstellar medium, through Solar System formation, ultimately to the origin of life.

Primitive meteorites, interplanetary dust particles, and comets are remnants of the early Solar System. The abundant organic matter contained in these primitive bodies records a long chemical history, beginning with reactions that occurred in the interstellar medium, and continuing with reactions that occurred during the formation and evolution of the early solar nebula, and in the formation and evolution of the parent bodies of meteorites. To untangling this record is a challenge: the vast majority of the organic carbon exists as an extremely complex polymer—large molecules with repeating units—that is insoluble by most means.

Cody and colleagues pioneered procedures applying solid-state nuclear magnetic resonance (NMR) spectroscopy to get around the insolubility problem. NMR spectroscopy reveals molecular information when nuclei of certain atoms are placed in an enormous magnetic field and then resonantly excited with radio-frequency pulses. The emission signal from the excited nuclei yield a spectral “fingerprint” characteristic of the electronic structure of the host molecule.

Cody also employs Carbon X-ray Absorption Edge Structure spectroscopy, which is essential to the analysis of comet particles. Results from both methods ultimately provide essential clues regarding the origin of extraterrestrial organic carbon and the history of chemical processing as the molecular cloud coalesced into the Solar System.

The retention of carbon in the inner Earth is a prerequisite to the origin of the global carbon cycle. Cody with colleagues have conducted NMR-based experiments that reveal how some carbon was retained even during the magma-ocean phase of Earth history. Such carbon may have been essential for the emergence of life.

The transition from a chemical world to a biological one remains a profound mystery. One promising area of this research is to investigate Earth’s natural catalysts and the environments in which they are found. Cody and colleagues study catalytic properties of so-called transition metal minerals that are abundant in deep-sea ore-bodies to help piece together the puzzle of life’s origins.                   

Cody received his B.S. from University of Massachusetts in geology in 1982. He then taught and conducted research there for two years. In then he joined Exxon Research and Engineering and studied the chemical structure of coal, work that inspired his Ph.D. thesis at Pennsylvania State University. After receiving his Ph. D., Cody was an Enrico Fermi Scholar at the Argonne National Laboratory. He joined Carnegie in 1995 and was acting director of the Geophysical Laboratory from 2013 until April 2018. He is principal investigator in charge of W. M. Keck Solid State NMR Laboratory and principal investigator of the Carnegie's NASA Astrobiology Institute. For more information see here

 

 

Scientific Area: 
Project(s): 

Explore Carnegie Science

Carnegie Earth and Planets Director Richard Carlson
January 21, 2020

Washington, DC — Richard Carlson, director of Carnegie’s Earth and Planets division, has been chosen to receive the Geochemical Society’s highest honor, the Victor Moritz Goldschmidt Award, in recognition of his forefront research into the formation of the Solar System and the geologic history of the Earth, the society announced Tuesday.

The society will present the award to Carlson at the Goldschmidt Conference, to be held in Honolulu in June.

“I am deeply honored to receive the V.M. Goldschmidt Award, which recognizes our efforts to understand the origin and evolution of Earth’s continental crust on Earth and the consequences of its formation

Artist’s concept by Robin Dienel, courtesy of Carnegie Institution for Science
January 14, 2020

Washington, DC— A “cold Neptune” and two potentially habitable worlds are part of a cache of five newly discovered exoplanets and eight exoplanet candidates found orbiting nearby red dwarf stars, which are reported in The Astrophysical Journal Supplement Series by a team led by Carnegie’s Fabo Feng and Paul Butler.

The two potentially habitable planets are orbiting GJ180 and GJ229A, which are among the nearest stars to our own Sun, making them prime targets for observations by next-generation space- and land-based telescopes.  They are both super-Earths with at least 7.5 and 7.9 times our planet’s mass and orbital periods of 106 and 122 days

December 16, 2019

Washington, DC— Every school child learns about the water cycle—evaporation, condensation, precipitation, and collection. But what if there were a deep Earth component of this process happening on geologic timescales that makes our planet ideal for sustaining life as we know it?

New work published in the Proceedings of the National Academy of Sciences by Carnegie’s Yanhao Lin and Michael Walter—along with former Carnegie scientists and ongoing collaborators Ho-Kwang “Dave” Mao and Qingyang Hu of the Center for High Pressure Science and Technology Advanced Research Shanghai and Yue Meng of Argonne National Laboratory—demonstrates that a key

Image Credit: NASA, ESA, JPL, SSI, Cassini Imaging Team
December 9, 2019

Washington, DC— Saturn’s icy moon Enceladus is of great interest to scientists due to its subsurface ocean, making it a prime target for those searching for life elsewhere. New research led by Carnegie’s Doug Hemingway reveals the physics governing the fissures through which ocean water erupts from the moon’s icy surface, giving its south pole an unusual “tiger stripe” appearance.

“First seen by the Cassini mission to Saturn, these stripes are like nothing else known in our Solar System,” lead author Hemingway explained. “They are parallel and evenly spaced, about 130 kilometers long and 35 kilometers apart. What makes them

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments.