Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present a detailed study of two partial Lyman limit systems (pLLSs) of neutral hydrogen column density N-HI approximate to ( 1 - 3) x 10(16) cm(-2 )discovered at z = 0.5 in the Cosmic Ultraviolet Baryon Survey (CUBS). Available far-ultraviolet spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and optical echelle spectra from MIKE on the Magellan Telescopes enable a comprehensive ionization analysis of diffuse circumgalactic gas based on resolved kinematics and abundance ratios of atomic species spanning five different ionization stages. These data provide unambiguous evidence of kinematically aligned multiphase gas that masquerades as a single-phase structure and can only be resolved by simultaneous accounting of the full range of observed ionic species. Both systems are resolved into multiple components with inferred alpha-element abundance varying from [alpha/H] approximate to-0.8 to near solar and densities spanning over two decades from log n(H)/cm(-3) approximate to -2.2 to < -4.3. Available deep galaxy survey data from the CUBS program taken with VLT/MUSE, Magellan/LDSS3-C and Magellan/IMACS reveal that the z = 0.47 system is located 55 kpc from a star-forming galaxy with prominent Balmer absorption of stellar mass M-star approximate to 2 x 10(10 )M(circle dot), while the z = 0.54 system resides in an overdense environment of 11 galaxies within 750 kpc in projected distance, with the most massive being a luminous red galaxy of M-star approximate to 2 x 10(11) M-circle dot at 375 kpc. The study of these two pLLSs adds to an emerging picture of the complex, multiphase circumgalactic gas that varies in chemical abundances and density on small spatial scales in diverse galaxy environments. The inhomogeneous nature of metal enrichment and density revealed in observations must be taken into account in theoretical models of diffuse halo gas.
View Full Publication open_in_new
Abstract
We present the first statistical analysis of kinematically resolved, spatially extended emission around z = 2-3 galaxies in the Keck Baryonic Structure Survey (KBSS) using the Keck Cosmic Web Imager (KCWI). Our sample of 59 star-forming galaxies (z(med) = 2.29) comprises the subset with typical KCWI integration times of similar to 5 h and with existing imaging data from the Hubble Space Telescope and/or adaptive optics-assisted integral field spectroscopy. The high-resolution images were used to evaluate the azimuthal dependence of the diffuse emission with respect to the stellar continuum within projected galactocentric distances of less than or similar to 30 proper kpc. We introduce cylindrically projected 2D spectra (CP2D) that map the averaged spectral profile over a specified range of azimuthal angle, as a function of impact parameter around galaxies. The averaged CP2D spectrum of all galaxies shows clear signatures of resonant scattering by outflowing gas. We stacked the CP2D spectra of individual galaxies over ranges of azimuthal angle with respect to their major axes. The extended emission along the galaxy principal axes is statistically indistinguishable, with residual asymmetry of <= 2 percent (similar to 2 sigma) of the integrated emission. The symmetry implies that the scattering medium is dominated by outflows in all directions within 30 kpc. Meanwhile, we find that the blueshifted component of emission is marginally stronger along galaxy minor axes for galaxies with relatively weak emission. We speculate that this weak directional dependence of emission becomes discernible only when the escape fraction is low. These discoveries highlight the need for similar analyses in simulations with radiative transfer modelling.
View Full Publication open_in_new
Abstract
We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36-0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as CII, CIII, NIII, MgII, SIII, SIIII, OII, OIII, OvI, and FeII absorption that span several hundred km s(-1) in line-of-sight velocity. Specifically, higher column density components (logN(HI)/cm(-2) greater than or similar to 16) in all four absorbers comprise dynamically cool gas with K and modest non-thermal broadening of km s(-1). The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of Hi and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain , we demonstrate that the cool-phase gas in LLSs has a median metallicity of , with a 16-84 percentile range of [alpha/H] = (-1.3, -0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/alpha], [N/alpha], and [Fe/alpha]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium.
View Full Publication open_in_new
Abstract
The intergalactic medium (IGM) acts like a calorimeter recording energy injection by cosmic structure formation, shocks and photoheating from stars and active galactic nuclei. It was recently proposed that spatially inhomogeneous TeV-blazars could significantly heat up the underdense IGM, resulting in patches of both cold and warm IGM around z similar or equal to 2-3. The goal of this study is to compare predictions of different blazar heating models with recent observations of the IGM. We perform a set of cosmological simulations and carefully compute mock observables of the Lyman-alpha (Ly alpha) forest. We perform a detailed assessment of different systematic uncertainties which typically impact this type of observables and find that they are smaller than the differences between our models. We find that our inhomogeneous blazar heating model is in good agreement with the Ly alpha line properties and the rescaled flux probability distribution function at high redshift (2.5 < z < 3) but that our blazar heating models are challenged by lower redshift data (2 < z < 2.5). Our results could be explained by hell reionization although state-of-the-art models fall short on providing enough heating to the low-density IGM, thus motivating further radiative transfer studies of inhomogeneous hell reionization. If blazars are indeed hosted by group-mass haloes of 2 x 10(13)M(circle dot), a later onset of blazar heating in comparison with previous models would be favoured, which could bring our findings here in agreement with the evidence of blazar heating from local gamma-ray observations.
View Full Publication open_in_new
Abstract
Metal-poor nearby galaxies hosting massive stars have a fundamental role to play in our understanding of both high-redshift galaxies and low-metallicity stellar populations. But while much attention has been focused on their bright nebular gas emission, the massive stars that power it remain challenging to constrain. Here we present exceptionally deep Hubble Space Telescope ultraviolet spectra targeting six local (z < 0.02) galaxies that power strong nebular C iv emission approaching that encountered at z > 6. We find that the strength and spectral profile of the nebular C iv in these new spectra follow a sequence evocative of resonant scattering models, indicating that the hot circumgalactic medium likely plays a key role in regulating C iv escape locally. We constrain the metallicity of the massive stars in each galaxy by fitting the forest of photospheric absorption lines, reporting measurements driven by iron that lie uniformly below 10% solar. Comparison with the gas-phase oxygen abundances reveals evidence for enhancement in O/Fe 2-4 times above solar across the sample, robust to assumptions about the absolute gas-phase metallicity scale. This supports the idea that these local systems are more chemically similar to their primordial high-redshift counterparts than to the bulk of nearby galaxies. Finally, we find significant tension between the strong stellar wind profiles observed and our population synthesis models constrained by the photospheric forest in our highest-quality spectra. This reinforces the need for caution in interpreting wind lines in isolation at high redshift, but also suggests a unique path toward validating fundamental massive star physics at extremely low metallicity with integrated ultraviolet spectra.
View Full Publication open_in_new
Abstract
The combination of the MOSDEF and KBSS-MOSFIRE surveys represents the largest joint investment of Keck/MOSFIRE time to date, with similar to 3000 galaxies at 1.4 less than or similar to z less than or similar to 3.8, roughly half of which are at z similar to 2. MOSDEF is photometric- and spectroscopic-redshift selected with a rest-optical magnitude limit, while KBSS-MOSFIRE is primarily selected based on rest-UV colours and a rest-UV magnitude limit. Analysing both surveys in a uniform manner with consistent spectral-energy-distribution (SED) models, we find that the MOSDEF z similar to 2 targeted sample has higher median M-* and redder rest U-V colour than the KBSS-MOSFIRE z similar to 2 targeted sample, and smaller median SED-based SFR and sSFR (SFR(SED) and sSFR(SED)). Specifically, MOSDEF targeted a larger population of red galaxies with U-V and V-J >= 1.25, while KBSS-MOSFIRE contains more young galaxies with intense star formation. Despite these differences in the z similar to 2 targeted samples, the subsets of the surveys with multiple emission lines detected and analysed in previous work are much more similar. All median host-galaxy properties with the exception of stellar population age - i.e. M-*, SFR(SED), sSFR(SED), A(V), and UVJ colours - agree within the uncertainties. Additionally, when uniform emission-line fitting and stellar Balmer absorption correction techniques are applied, there is no significant offset between both samples in the [O iii]lambda 5008/H beta versus [N ii]lambda 6585/H alpha diagnostic diagram, in contrast to previously reported discrepancies. We can now combine the MOSDEF and KBSS-MOSFIRE surveys to form the largest z similar to 2 sample with moderate-resolution rest-optical spectra and construct the fundamental scaling relations of star-forming galaxies during this important epoch.
View Full Publication open_in_new
Abstract
We provide a new observational test for a key prediction of the Lambda CDM cosmological model: the contributions of mergers with different halo-to-main-cluster mass ratios to cluster-sized halo growth. We perform this test by dynamically analyzing 7 galaxy clusters, spanning the redshift range 0.13 < z(c) < 0.45 and caustic mass range 0.4-1.5 10(15) h(0.73)(-1) M-circle dot, with an average of 293 spectroscopically confirmed bound galaxies to each cluster. The large radial coverage (a few virial radii), which covers the whole infall region, with a high number of spectroscopically identified galaxies enables this new study. For each cluster, we identify bound galaxies. Out of these galaxies, we identify infalling and accreted halos and estimate their masses and their dynamical states. Using the estimated masses, we derive the contribution of different mass ratios to cluster-sized halo growth. For mass ratios between similar to 0.2 and 0.7, we find a similar to 1 sigma agreement with Lambda CDM expectations based on the Millennium simulations I and II. At low mass ratios, less than or similar to 0.2, our derived contribution is underestimated since the detection efficiency decreases at low masses, similar to 2 x 10(14) h(0.73)(-1) M-circle dot. At large mass ratios, greater than or similar to 0.7, we do not detect halos probably because our sample, which was chosen to be quite X-ray relaxed, is biased against large mass ratios. Therefore, at large mass ratios, the derived contribution is also underestimated.
View Full Publication open_in_new
Abstract
We present Keck LRIS spectroscopy for a sample of 103 massive (M > 10(10.6) M-circle dot) galaxies with redshifts 0.9 < z < 1.6. Of these, 56 are quiescent with high signal-to-noise absorption line spectra, enabling us to determine robust stellar velocity dispersions for the largest sample yet available beyond a redshift of 1. Together with effective radii measured from deep Hubble Space Telescope images, we calculate dynamical masses and address key questions relating to the puzzling size growth claimed by many observers for quiescent galaxies over the redshift interval 0 < z < 2. Our large sample provides the first opportunity to carefully examine the relationship between stellar and dynamical masses at high redshift. We find this relation closely follows that determined locally. We also confirm the utility of the locally established empirical calibration which enables high-redshift velocity dispersions to be estimated photometrically, and we determine its accuracy to be 35%. To address recent suggestions that progenitor bias-the continued arrival of recently quenched larger galaxies-can largely explain the size evolution of quiescent galaxies, we examine the growth at fixed velocity dispersion assuming this quantity is largely unaffected by the merger history. Using the velocity dispersion-age relation observed in the local universe, we demonstrate that significant size and mass growth have clearly occurred in individual systems. Parameterizing the relation between mass and size growth over 0 < z < 1.6 as R alpha M-alpha , we find alpha = 1.6 +/- 0.3, in agreement with theoretical expectations from simulations of minor mergers. Relaxing the assumption that the velocity dispersion is unchanging, we examine growth assuming a constant ranking in galaxy velocity dispersion. This approach is applicable only to the large-dispersion tail of the distribution, but yields a consistent growth rate of alpha = 1.4 +/- 0.2. Both methods confirm that progenitor bias alone is insufficient to explain our new observations and that quiescent galaxies have grown in both size and stellar mass over 0 < z < 1.6.
View Full Publication open_in_new
Abstract
We present Hubble Space Telescope imaging and grism spectroscopy in the field of the distant galaxy cluster JKCS 041 using theWide Field Camera 3. We confirm that JKCS 041 is a rich cluster and derive a redshift z = 1.80 via the spectroscopic identification of 19 member galaxies, of which 15 are quiescent. These are centered upon diffuse X-ray emission seen by the Chandra observatory. As JKCS 041 is the most distant known cluster with such a large, spectroscopically confirmed quiescent population, it provides a unique opportunity to study the effect of the environment on galaxy properties at early epochs. We construct high-quality composite spectra of the quiescent cluster members that reveal prominent Balmer and metallic absorption lines. Using these, we measure the mean stellar ages in two bins of stellar mass. The quiescent cluster members' ages agree remarkably closely with that inferred byWhitaker et al. for similarly selected samples in the field, supporting the idea that the cluster environment is more efficient at truncating star formation while not having a strong effect on the mean epoch of quenching. We find some evidence (90% confidence) for a lower fraction of disk-like quiescent systems in JKCS 041 compared to a sample of coeval field galaxies drawn from the CANDELS survey. Taking this into account, we do not detect a significant difference between the mass-radius relations of the quiescent JKCS 041 members and our z similar to 1.8 field sample. Finally, we demonstrate how differences in the morphological mixture of quenched systems can complicate measures of the environmental dependence of size growth.
View Full Publication open_in_new
Abstract
Using the MOSFIRE near-infrared multi-slit spectrograph on the Keck 1 Telescope, we have secured high signal-to-noise ratio absorption line spectra for six massive galaxies with redshift 2 < z < 2.5. Five of these galaxies lie on the red sequence and show signatures of passive stellar populations in their rest-frame optical spectra. By fitting broadened spectral templates we have determined stellar velocity dispersions and, with broad-band Hubble Space Telescope and Spitzer photometry and imaging, stellar masses and effective radii. Using this enlarged sample of galaxies, we confirm earlier suggestions that quiescent galaxies at z > 2 have small sizes and large velocity dispersions compared to local galaxies of similar stellar mass. The dynamical masses are in very good agreement with stellar masses (log M-*/M-dyn = -0.02 +/- 0.03), although the average stellar-to-dynamical mass ratio is larger than that found at lower redshift (-0.23 +/- 0.05). By assuming evolution at fixed velocity dispersion, not only do we confirm a surprisingly rapid rate of size growth but we also consider the necessary evolutionary track on the mass-size plane and find a slope alpha = d log R-e/d log M-* greater than or similar to 2 inconsistent with most numerical simulations of minor mergers. Both results suggest an additional mechanism may be required to explain the size growth of early galaxies.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 838
  • Page 839
  • Page 840
  • Page 841
  • Current page 842
  • Page 843
  • Page 844
  • Page 845
  • Page 846
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025