Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Isotopic abundances of short-lived radioisotopes such as Al-26 appear to provide precise chronometers of events in the early Solar System, assuming that they were initially homogeneously distributed. However, both Fe-60 and Al-26 were likely formed in a supernova and then injected into the solar nebula in a highly heterogeneous manner. Conversely, the abundances in primitive meteorites of the three stable oxygen isotopes exhibitmass-independent fractionations that somehow survived homogenization in the solar nebula. Both the presence of refractory particles in Comet 81P/Wild 2 and the anomalously high crystallinity observed in protoplanetary disks may require large-scale outward radial transport from the hotter inner disk regions, even as disk gas accretes onto the central protostar. We examine here theoretical efforts to solve these seemingly disparate cosmochemical puzzles and conclude that the mixing and transport produced by a phase of marginal gravitational instability appears to meet all of these constraints.
View Full Publication open_in_new
Abstract
Giant planet formation by gravitational disc instabilities has become theoretically and observationally acceptable at large distances, but remains theoretically contentious at distances inside about 20 au. Several new three-dimensional hydrodynamics models are presented, where radiative transfer is handled in the flux-limited diffusion approximation from the very start of the model, rather than being employed only after clumps have begun to form. The three models show that the use of the flux limiter has little appreciable effect on the early evolution of a disc instability, in agreement with the conclusions of the previous models, which studied later phases. In addition, two new models are presented where the central protostar is either held fixed or is allowed to wobble in such a manner as to preserve the centre of mass of the stardisc system. While spiral arms and clumps form in both models, the wobbling protostar model appears to be better able to form self-gravitating clumps that could contract to form gas giant protoplanets. Combined with previous results, the new models imply that disc instability should be able to form self-gravitating clumps inside, as well as outside, 20 au in suitably massive and cool protoplanetary discs.
View Full Publication open_in_new
Abstract
The solar nebula is thought to have undergone a number of episodes of FU Orionis outbursts during its early evolution. We present here the first calculations of the trajectories of particles in a marginally gravitationally unstable solar nebula during an RI Orionis outburst, which show that 0.1-10 cm-sized particles traverse radial distances of 10 AU or more, inward and outward, in less than 200 yrs, exposing the particles to temperatures from similar to 60 K to similar to 1500 K. Such trajectories can thus account for the discovery of refractory particles in comets. Refractory particles should acquire Wark-Lovering-like rims as they leave the highest temperature regions of the disk, and these rims should have significant variations in their stable oxygen isotope ratios. Particles are likely to be heavily modified or destroyed if they pass within 1 AU of the Sun, and so are only likely to survive if they formed in the final few FU Orionis outbursts, or were transported to the outer reaches of the solar system. Calcium, aluminum-rich inclusions (CAIs) from primitive meteorites are the oldest known solar system objects and have a very narrow age range. Most CAIs may have formed at the end of the FU Orionis outbursts phase, with an age range reflecting the period between the last few outbursts. (C) 2012 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of similar to 10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.
View Full Publication open_in_new
Abstract
The Thermal Infrared imager for the GMT which provides Extreme contrast and Resolution (TIGER) is intended as a small-scale, targeted instrument capable of detecting and characterizing exoplanets and circumstellar disks, around both young systems in formation, and more mature systems in the solar neighborhood. TIGER can also provide general purpose infrared imaging at wavelengths from 1.5-14 mu m. The instrument will utilize the facility adaptive optics (AO) system. With its operation at NIR to MIR wavelengths (where good image quality is easier to achieve), and much of the high-impact science using modestly bright guide stars, the instrument can be used early in the operation of the GMT.
View Full Publication open_in_new
Abstract
Analyses of primitive meteorites and cometary samples have shown that the solar nebula must have experienced a phase of large-scale outward transport of small refractory grains as well as homogenization of initially spatially heterogeneous short-lived isotopes. The stable oxygen isotopes, however, were able to remain spatially heterogeneous at the similar to 6% level. One promising mechanism for achieving these disparate goals is the mixing and transport associated with a marginally gravitationally unstable (MGU) disk, a likely cause of FU Orionis events in young low-mass stars. Several new sets of MGU models are presented that explore mixing and transport in disks with varied masses (0.016 to 0.13 M-circle dot) around stars with varied masses (0.1 to 1 M-circle dot) and varied initial Q stability minima (1.8 to 3.1). The results show that MGU disks are able to rapidly (within similar to 10(4) yr) achieve large-scale transport and homogenization of initially spatially heterogeneous distributions of disk grains or gas. In addition, the models show that while single-shot injection heterogeneity is reduced to a relatively low level (similar to 1%), as required for early solar system chronometry, continuous injection of the sort associated with the generation of stable oxygen isotope fractionations by UV photolysis leads to a sustained, relatively high level (similar to 10%) of heterogeneity, in agreement with the oxygen isotope data. These models support the suggestion that the protosun may have experienced at least one FU Orionis-like outburst, which produced several of the signatures left behind in primitive chondrites and comets.
View Full Publication open_in_new
Abstract
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.'' 5 and 14.1 mag at 1 '' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known beta Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >= 5 M-Jup planet beyond 80 AU, and <21% of debris disk stars have a >= 3 M-Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d(2)N/dMda proportional to m(alpha)a(beta), where m is planet mass and a is orbital semi-major axis (with a maximum value of a(max)). We find that beta < -0.8 and/or alpha > 1.7. Likewise, we find that beta < -0.8 and/or a(max) < 200 AU. For the case where the planet frequency rises sharply with mass (alpha > 1.7), this occurs because all the planets detected to date have masses above 5 M-Jup, but planets of lower mass could easily have been detected by our search. If we ignore the beta Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a >= 3 M-Jup planet beyond 10 AU, and beta < -0.8 and/or alpha < -1.5. Likewise, beta < -0.8 and/or a(max) < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation >40 AU and planet masses >3 M-Jup do not carve the central holes in these disks.
View Full Publication open_in_new
Abstract
We report results of a direct imaging survey for giant planets around 80 members of the beta Pic, TW Hya, TucanaHorologium, AB Dor, and Hercules-Lyra moving groups, observed as part of the Gemini/NICI Planet-Finding Campaign. For this sample, we obtained median contrasts of Delta H = 13.9 mag at 1 '' in combined CH4 narrowband ADI+ SDI mode and median contrasts of.H = 15.1 mag at 2 '' in H-band ADI mode. We found numerous (> 70) candidate companions in our survey images. Some of these candidates were rejected as common-proper motion companions using archival data; we reobserved with Near-Infrared Coronagraphic Imager (NICI) all other candidates that lay within 400 AU of the star and were not in dense stellar fields. The vast majority of candidate companions were confirmed as background objects from archival observations and/or dedicated NICI Campaign followup. Four co-moving companions of brown dwarf or stellar mass were discovered in this moving group sample: PZ Tel B (36 +/- 6M(Jup), 16.4 +/- 1.0 AU), CD-35 2722B (31 +/- 8M(Jup), 67 +/- 4 AU), HD 12894B (0.46 +/- 0.08M(circle dot), 15.7 +/- 1.0 AU), and BD+ 07 1919C (0.20 +/- 0.03M(circle dot), 12.5 +/- 1.4 AU). From a Bayesian analysis of the achieved H band ADI and ASDI contrasts, using power-law models of planet distributions and hot-start evolutionary models, we restrict the frequency of 1-20M(Jup) companions at semi-major axes from 10-150 AU to < 18% at a 95.4% confidence level using DUSTY models and to < 6% at a 95.4% using COND models. Our results strongly constrain the frequency of planets within semi-major axes of 50 AU as well. We restrict the frequency of 1-20M(Jup) companions at semi-major axes from 10-50 AU to < 21% at a 95.4% confidence level using DUSTY models and to < 7% at a 95.4% using COND models. This survey is the deepest search to date for giant planets around young moving group stars.
View Full Publication open_in_new
Abstract
We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (approximate to 1.5-2.5 M-circle dot) conducted to date and includes the planet hosts beta Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58(-20)(+21) M-Jup and 55(-19)(+20) M-Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M-circle dot stars can have giant planets greater than 4 M-Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M-Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M-Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.
View Full Publication open_in_new
Abstract
We announce the discovery of a similar to 2 Jupiter-mass planet in an eccentric 11 yr orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m s(-1). After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 832
  • Page 833
  • Page 834
  • Page 835
  • Current page 836
  • Page 837
  • Page 838
  • Page 839
  • Page 840
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025