Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Polytene chromosomes have for 80 years provided the highest resolution view of interphase genome structure in an animal cell nucleus. These chromosomes represent the normal genomic state of nearly all Drosophila larval and many adult cells, and a better understanding of their striking banded structure has been sought for decades. A more recently appreciated characteristic of Drosophila polytene cells is somatic genome instability caused by unfinished replication (UR). Repair of stalled forks generates enough deletions in polytene salivary gland cells to alter 10%-90% of the DNA strands within more than 100 UR regions comprising 20% of the euchromatic genome. We accurately map UR regions and show that most approximate large polytene bands, indicating that replication forks frequently stall near band boundaries in late S phase. Chromosome conformation capture has recently identified dense topologically associated domains (TADs) in many genomes and most UR bands are similar or slightly smaller than a cognate Drosophila TAD. We argue that bands serve the evolutionarily ancient function of coordinating genome replication with local gene activity. We also discuss the relatively recent evolution of polyteny and somatic instability in Diptera and propose that these processes helped propel the amazing success of two-winged flies in becoming the most ecologically diverse insect group, with 200 times the number of species as mammals.
View Full Publication open_in_new
Abstract
Mutations in the fragile X mental retardation 1 gene (FMR1) cause the most common inherited human autism spectrum disorder. FMR1 influences messenger RNA (mRNA) translation, but identifying functional targets has been difficult. We analyzed quiescent Drosophila oocytes, which, like neural synapses, depend heavily on translating stored mRNA. Ribosome profiling revealed that FMR1 enhances rather than represses the translation of mRNAs that overlap previously identified FMR1 targets, and acts preferentially on large proteins. Human homologs of at least 20 targets are associated with dominant intellectual disability, and 30 others with recessive neurodevelopmental dysfunction. Stored oocytes lacking FMR1 usually generate embryos with severe neural defects, unlike stored wild-type oocytes, which suggests that translation of multiple large proteins by stored mRNAs is defective in fragile X syndrome and possibly other autism spectrum disorders.
View Full Publication open_in_new
Abstract
Tissue homeostasis involves a complex balance of developmental signals and environmental cues that dictate stem cell function. We found that dietary lipids control enteroendocrine cell production from Drosophila posterior midgut stem cells. Dietary cholesterol influences new intestinal cell differentiation in an Hr96-dependent manner by altering the level and duration of Notch signaling. Exogenous lipids modulate Delta ligand and Notch extracellular domain stability and alter their trafficking in endosomal vesicles. Lipid-modulated Notch signaling occurs in other nutrient-dependent tissues, suggesting that Delta trafficking in many cells is sensitive to cellular sterol levels. These diet-mediated alterations in young animals contribute to a metabolic program that persists after the diet changes. A low-sterol diet also slows the proliferation of enteroendocrine tumors initiated by Notch pathway disruption. Thus, a specific dietary nutrient can modify a key intercellular signaling pathway to shift stem cell differentiation and cause lasting changes in tissue structure and physiology.
View Full Publication open_in_new
Abstract
Disruptions in energy homeostasis severely affect reproduction in many organisms and are linked to several reproductive disorders inhumans. As a result, understanding the mechanisms that control nutrient accumulation in the oocyte will provide valuable insights into the links between metabolic disease and reproductive dysfunction. We show that the steroid hormone ecdysone functions in Drosophila to control lipid metabolism and support oocyte production. First, local EcR-mediated signaling induces a stage-specific accumulation of lipids in stage-10 oocytes. EcR induces lipid accumulation by promoting the activation of the lipogenic transcription factor SREBP and by controlling the expression of the low-density lipoprotein (LDL) receptor homolog, LpR2. Second, global signaling via the ecdysone receptor, EcR, establishes a female metabolic state and promotes whole-body triglyceride and glycogen storage at high levels. EcR acts in the CNS to mediate these effects, in part by promoting higher levels of feeding in females. Thus, ecdysone functions at two levels to support reproduction: first by inducing lipid accumulation in the late stages of oocyte development and second by providing a signal that coordinates lipid metabolism in the germline with whole-animal lipid homeostasis. Ecdysone regulation allows females to assess the demands of oogenesis and alter their behavior and metabolic state to support the biosynthetic requirements of oocyte production.
View Full Publication open_in_new
Abstract
basecalling: CASAVA v1.8.2reads aligned to genome using Bowtie2 v 2.0.6identified reads hitting transcripts using TopHat v 2.0.7 with -G --no novel juncs and Refseq dm3-iGenomes.gtfcalculated transcript fpkm values and gene fpkm values using Cufflinks version 2.02 -G with dm3-iGenomes.gtfGenome_build: Refseq annotation file:dm3 and dm3-iGenomes.gtfSupplementary_files_format_and_content: Cufflinks output file: genes.fpkm_tracking:
View Full Publication open_in_new
Abstract
basecalling: CASAVA v1.8.2reads aligned to genome using Bowtie2 v 2.0.6identified reads hitting transcripts using TopHat v 2.0.7 with -G --no novel juncs and Refseq dm3-iGenomes.gtfcalculated transcript fpkm values and gene fpkm values using Cufflinks version 2.02 -G with dm3-iGenomes.gtfGenome_build: Refseq annotation file:dm3 and dm3-iGenomes.gtfSupplementary_files_format_and_content: Cufflinks output file: genes.fpkm_tracking:
View Full Publication open_in_new
Abstract
basecalling: CASAVA v1.8.2reads aligned to genome using Bowtie2 v 2.0.6identified reads hitting transcripts using TopHat v 2.0.7 with -G --no novel juncs and Refseq dm3-iGenomes.gtfcalculated transcript fpkm values and gene fpkm values using Cufflinks version 2.02 -G with dm3-iGenomes.gtfGenome_build: Refseq annotation file: dm3 (Release 5) and dm3-iGenomes.gtfSupplementary_files_format_and_content: Cufflinks output file (.xlsx)
View Full Publication open_in_new
Abstract
basecalling: CASAVA v1.8.2reads aligned to genome using Bowtie2 v 2.0.6identified reads hitting transcripts using TopHat v 2.0.7 with -G --no novel juncs and Refseq dm3-iGenomes.gtfcalculated transcript fpkm values and gene fpkm values using Cufflinks version 2.02 -G with dm3-iGenomes.gtfGenome_build: Refseq annotation file:dm3 and dm3-iGenomes.gtfSupplementary_files_format_and_content: Cufflinks output file: genes.fpkm_tracking:
View Full Publication open_in_new
Abstract
basecalling: CASAVA v1.8.2reads aligned to genome using Bowtie2 v 2.0.6identified reads hitting transcripts using TopHat v 2.0.7 with -G --no novel juncs and Refseq dm3-iGenomes.gtfcalculated transcript fpkm values and gene fpkm values using Cufflinks version 2.02 -G with dm3-iGenomes.gtfGenome_build: Refseq annotation file: dm3 (Release 5) and dm3-iGenomes.gtfSupplementary_files_format_and_content: Cufflinks output file (.xlsx)
View Full Publication open_in_new
Abstract
basecalling: CASAVA v1.8.2reads aligned to genome using Bowtie2 v 2.0.6identified reads hitting transcripts using TopHat v 2.0.7 with -G --no novel juncs and Refseq dm3-iGenomes.gtfcalculated transcript fpkm values and gene fpkm values using Cufflinks version 2.02 -G with dm3-iGenomes.gtfGenome_build: Refseq annotation file:dm3 and dm3-iGenomes.gtfSupplementary_files_format_and_content: Cufflinks output file: genes.fpkm_tracking:
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 716
  • Page 717
  • Page 718
  • Page 719
  • Current page 720
  • Page 721
  • Page 722
  • Page 723
  • Page 724
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025