Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Platyhelminthes are excellent models for the study of stem cell biology, regeneration and the regulation of scale and proportion. In addition, parasitic forms infect millions of people worldwide. Therefore, it is puzzling that they remain relatively unexplored at the molecular level. We present the characterization of similar to3000 non-redundant cDNAs from a clonal line of the planarian Schmidtea mediterranea. The obtained cDNA sequences, homology comparisons and high-throughput whole-mount in situ hybridization data form part of the S. mediterranea database (SmedDb; http://planaria.neuro.utah.edu). Sixty-nine percent of the cDNAs analyzed share similarities with sequences deposited in GenBank and dbEST. The remaining gene transcripts failed to match sequences in other organisms, even though a large number of these (similar to80%) contained putative open reading frames. Taken together, the molecular resources presented in this study, along with the ability of abrogating gene expression in planarians using RNA interference technology, pave the way for a systematic study of the remarkable biological properties displayed by Platyhelminthes.
View Full Publication open_in_new
Abstract
The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7 m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m s(-1) over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.
View Full Publication open_in_new
Abstract
Carbonate liquids are an important class of molten salts, not just for industrial applications, but also in geological processes. Carbonates are generally expected to be simple liquids, in terms of ionic interactions between the molecular carbonate anions and metal cations, and therefore relatively structureless compared to more "polymerized" silicate melts. But there is increasing evidence from phase relations, metal solubility, glass spectroscopy and simulations to suggest the emergence of carbonate "networks" at length scales longer than the component molecular anions. The stability of these emergent structures are known to be sensitive to temperature, but are also predicted to be favoured by pressure. This is important as a recent study suggests that subducted surface carbonate may melt near the Earth's transition zone (similar to 44 km), representing a barrier to the deep carbon cycle depending on the buoyancy and viscosity of these liquids. In this study we demonstrate a major advance in our understanding of carbonate liquids by combining simulations and high pressure measurements on a carbonate glass, (K2CO3-MgCO3) to pressures in excess of 40 GPa, far higher than any previous in situ study. We show the clear formation of extended low-dimensional carbonate networks of close CO32- pairs and the emergence of a "three plus one" local coordination environment, producing an unexpected increase in viscosity with pressure. Although carbonate melts may still be buoyant in the lower mantle, an increased viscosity by at least three orders of magnitude will restrict the upward mobility, possibly resulting in entrainment by the down-going slab.
View Full Publication open_in_new
Abstract
We present a computationally tractable implementation of spectro-perfectionism, a method which minimizes error imparted by spectral extraction. We develop our method in conjunction with a full raw reduction pipeline for the MINiature Exoplanet Radial Velocity Array (MINERVA), capable of performing both optimal extraction and spectro-perfectionism. Although spectro-perfectionism remains computationally expensive, our implementation can extract a MINERVA exposure in approximately 30 minutes. We describe our localized extraction procedure and our approach to point-spread function (PSF) fitting. We compare the performance of both extraction methods on a set of 119 exposures on HD 122064, an RV standard star. Both the optimal extraction and spectro-perfectionism pipelines achieve nearly identical RV precision under a six-exposure chronological binning. We discuss the importance of reliable calibration data for PSF fitting and the potential of spectro-perfectionism for future precise radial velocity exoplanet studies.
View Full Publication open_in_new
Abstract
We present the discovery of KELT-24 b, a massive hot Jupiter orbiting a bright (V = 8.3 mag, K = 7.2 mag) young F-star with a period of 5.6 days. The host star, KELT-24 (HD 93148), has a T-eff = 6509(-49)(+50) K, a mass of M-* = 1.460(-0.059)(+0.055) M-circle dot, a radius of R-* = 1.506 +/- 0.022 R-circle dot, and an age of 0.78(-0.42)(+0.61) Gyr. Its planetary companion (KELT-24 b) has a radius of R-P = 1.272 +/- 0.021 R-J and a mass of M-P = 5.18(-0.22)(+0.21) M-J, and from Doppler tomographic observations, we find that the planet's orbit is well-aligned to its host star's projected spin axis (lambda = 2.6(-3.6)(+5.1)). The young age estimated for KELT-24 suggests that it only recently started to evolve from the zero-age main sequence. KELT-24 is the brightest star known to host a transiting giant planet with a period between 5 and 10 days. Although the circularization timescale is much longer than the age of the system, we do not detect a large eccentricity or significant misalignment that is expected from dynamical migration. The brightness of its host star and its moderate surface gravity make KELT-24b an intriguing target for detailed atmospheric characterization through spectroscopic emission measurements since it would bridge the current literature results that have primarily focused on lower mass hot Jupiters and a few brown dwarfs.
View Full Publication open_in_new
Abstract
We leverage state-of-the-art machine learning methods and a decade's worth of archival data from Canada-France-Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features and observed IQ for CFHT's wide-field camera, MegaCam. Our contributions are several-fold. First, we collect, collate, and reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions of IQ and achieve a mean absolute error of similar to 0.07 arcsec for the predicted medians. Third, we explore the data-driven actuation of the 12 dome 'vents' installed in 2013-14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric uncertainties in conjunction with probabilistic generative modelling to identify candidate vent adjustments that are in-distribution (ID); for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed signal-to-noise ratio. On average, the reduction is similar to 12 per cent. Finally, we rank input features by their Shapley values to identify the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can forecast optimal observatory operating parameters to optimize IQ. We can then feed such forecasts into scheduling protocols and predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations and maintenance by the time CFHT's successor, the Maunakea Spectroscopic Explorer, is installed in the next decade.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 702
  • Page 703
  • Page 704
  • Page 705
  • Current page 706
  • Page 707
  • Page 708
  • Page 709
  • Page 710
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025