Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The thermal expansion at constant pressure of solid CD4 III is calculated for the low-temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region there is a giant peak of the negative thermal expansion. The height of this peak is comparable or even exceeds the thermal expansion of solid N-2, CO, O-2, or CH4 in their triple points. It is shown that like in the case of light methane, the effect of pressure is quite unusual: as evidenced from the pressure dependence of the thermodynamic Gruneisen parameter (which is negative and large in the absolute value), solid CD4 becomes increasingly quantum with rising pressure.
View Full Publication open_in_new
Abstract
With the exception of lithium, alkali metals do not react with elemental nitrogen either at ambient conditions or at elevated temperatures, requiring the search for alternative synthetic routes to their nitrogen-containing compounds. Here using a controlled decomposition of sodium azide (NaN3) at high pressure conditions, we synthesize two novel compounds, Na-3(N-2)(4) and NaN2, both containing dinitrogen anions. NaN2 synthesized at 4 GPa might be the common intermediate in high-pressure solid-state metathesis reactions, where NaN3 is used as a source of nitrogen, while Na-3(N-2)(4) opens a new class of compounds, where [N-2] units accommodate a noninteger formal charge of 0.75-. This finding can dramatically extend the expected compositions in other group 1 and 2 metal-nitrogen systems. Electronic structure calculations show the metallic character for both compounds.
View Full Publication open_in_new
Abstract
Alkaline earth metal peroxides are typical examples of ionic compounds containing polyanions. We herein report a stable BaO2 phase at high pressure up to 130 GPa found via a first-principles computational structure search and high-pressure experimental investigations. The identified monoclinic structure (space group C2/m) can be derived by sublattice distortions of Ba atoms and peroxide groups associated with the phonon mode softening of the lower-pressure Cmmm structure. Contrary to the previous expectation of polymerization of the peroxide group at elevated pressure, this phase retains the peroxide group and, interestingly, exhibits an insulating behavior demonstrating an increase of the band gap under compression. Our synchrotron x-ray diffraction (XRD) measurements could not distinguish between Cmmm and C2/m BaO2 definitively because the difference in XRD patterns is very subtle. However, our data do not show any sign of polymerization transition up to 120 GPa. Raman spectra of the O-O peroxide vibration show a small anomaly in frequency at 110 GPa, which is qualitatively like that predicted theoretically due to the Cmmm to C2/m phase transition, thus supporting the predicted transformation.
View Full Publication open_in_new
Abstract
The ultrafast synthesis of epsilon-Fe3N1+x in a diamond-anvil cell (DAC) from Fe and N-2 under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample temperature at the delay time was above 1400 K, confirmed by in situ transformation of alpha- to gamma-iron. Ultimately, the Fe and N-2 reacted uniformly throughout the beam path to form Fe3N1.33, as deduced from its established equation of state (EOS). We thus demonstrate that the activation energy provided by intense X-ray exposures in an XFEL can be coupled with the source time structure to enable exploration of the time-dependence of reactions under high-pressure conditions.
View Full Publication open_in_new
Abstract
Earth's lowermost mantle displays complex geological phenomena that likely result from its heterogeneous physical interaction with the core. Geophysical models of core-mantle interaction rely on the thermal and electrical conductivities of appropriate geomaterials which, however, have never been probed at representative pressure and temperature (P-T) conditions. Here we report on the opacity of single crystalline bridgmanite and ferropericlase and link it to their radiative and electrical conductivities. Our results show that light absorption in the visible spectral range is enhanced upon heating in both minerals but the rate of change in opacity with temperature is a factor of six higher in ferropericlase. As a result, bridgmanite in the lowermost mantle is moderately transparent while ferropericlase is highly opaque. Our measurements support previous indirect estimates of low (< 1 W/m/K) and largely temperature-independent radiative conductivity in the lowermost mantle. This implies that the radiative mechanism has not contributed significantly to cooling the Earth's core throughout the geologic time. Opaque ferropericlase is electrically conducting and mediates strong core-mantle electromagnetic coupling, explaining the intradecadal oscillations in the length of day, low secular geomagnetic variations in Central Pacific, and the preferred paths of geomagnetic pole reversals. (C) 2021 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
We synthesized two C-S-H compounds from a mixture of carbon and sulfur in hydrogen-C : (H2S)(2)H-2 and from sulfur in mixed methane-hydrogen fluids-(CH4)(x)(H2S)((2-x))H-2 at 4 GPa. X-ray synchrotron single-crystal diffraction and Raman spectroscopy have been applied to these samples up to 58 and 143 GPa, respectively. Both samples show a similar Al-2 Cu-type I4/mcm basic symmetry, while the hydrogen subsystem evolves with pressure via variously ordered molecular and extended modifications. The methane-bearing sample lowers symmetry to an orthorhombic Pnma structure after laser heating to 1400 K at 143 GPa. The results suggest that C-S-H compounds are structurally different from a common Im-3m H3S.
View Full Publication open_in_new
Abstract
Earth's core is composed of iron (Fe) alloyed with light elements, e.g., silicon (Si). Its thermal conductivity critically affects Earth's thermal structure, evolution, and dynamics, as it controls the magnitude of thermal and compositional sources required to sustain a geodynamo over Earth's history. Here we directly measured thermal conductivities of solid Fe and Fe-Si alloys up to 144GPa and 3300K. 15 at% Si alloyed in Fe substantially reduces its conductivity by about 2 folds at 132GPa and 3000K. An outer core with 15 at% Si would have a conductivity of about 20Wm(-1) K-1, lower than pure Fe at similar pressure-temperature conditions. This suggests a lower minimum heat flow, around 3 TW, across the core-mantle boundary than previously expected, and thus less thermal energy needed to operate the geodynamo. Our results provide key constraints on inner core age that could be older than two billion-years. Thermal conductivity of Earth's core affects Earth's thermal structure, evolution and dynamics. Based on thermal conductivity measurements of iron-silicon alloys at high pressure and temperature conditions, the authors here propose Earth's inner core could be older than previously expected.
View Full Publication open_in_new
Abstract
The synthesis of polynitrogen compounds is of great importance due to their potential as high-energy-density materials (HEDM), but because of the intrinsic instability of these compounds, their synthesis and stabilization is a fundamental challenge. Polymeric nitrogen units which may be stabilized in compounds with metals at high pressure are now restricted to non-branched chains with an average N-N bond order of 1.25, limiting their HEDM performances. Herein, we demonstrate the synthesis of a novel polynitrogen compound TaN5 via a direct reaction between tantalum and nitrogen in a diamond anvil cell at circa 100 GPa. TaN5 is the first example of a material containing branched all-single-bonded nitrogen chains [N-5(5-)](infinity). Apart from that we discover two novel Ta-N compounds: TaN4 with finite N-4(4-) chains and the incommensurately modulated compound TaN2-x, which is recoverable at ambient conditions.
View Full Publication open_in_new
Abstract
Following the discovery of high-temperature superconductivity in the La-H system, we studied the formation of new chemical compounds in the barium-hydrogen system at pressures from 75 to 173GPa. Using in situ generation of hydrogen from NH3BH3, we synthesized previously unknown superhydride BaH12 with a pseudocubic (fcc) Ba sublattice in four independent experiments. Density functional theory calculations indicate close agreement between the theoretical and experimental equations of state. In addition, we identified previously known P6/mmm-BaH2 and possibly BaH10 and BaH6 as impurities in the samples. Ab initio calculations show that newly discovered semimetallic BaH12 contains H-2 and H-3(-) molecular units and detached H-12 chains which are formed as a result of a Peierls-type distortion of the cubic cage structure. Barium dodecahydride is a unique molecular hydride with metallic conductivity that demonstrates the superconducting transition around 20K at 140GPa. Metallization of pure hydrogen via overlapping of electronic bands requires high pressure above 3 Mbar. Here the authors study the Ba-H system and discover a unique superhydride BaH12 that contains molecular hydrogen, which demonstrates metallic properties and superconductivity below 1.5 Mbar.
View Full Publication open_in_new
Abstract
Carbon-bearing phases show a rich variety of structural transitions as an adaptation to pressure. Of particular interest is the crossover from sp(2) carbon to sp(3) carbon, as physical and chemical properties of carbon in these distinct electronic configurations are very different. In this chapter we review pressure-induced sp(2)-sp(3) transitions in elemental carbon, carbonates, and hydrocarbons.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 682
  • Page 683
  • Page 684
  • Page 685
  • Current page 686
  • Page 687
  • Page 688
  • Page 689
  • Page 690
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025