Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Diana Roman and Andrea Goltz prepare a "trash-cano" at the Earth & Planets Laboratory Open House.
    Breaking News
    November 03, 2025

    Hundreds of Science Enthusiasts Attend Inaugural EPL Open House

    Water droplet ripples outward in blue water
    Breaking News
    October 30, 2025

    How do planets get wet? Experiments show water creation during planet formation process

    Grassland with forest on the horizon
    Breaking News
    October 24, 2025

    Prolonged, extreme drought in grassland and shrubland risks Dust Bowl conditions

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Earth's core is composed of iron (Fe) alloyed with light elements, e.g., silicon (Si). Its thermal conductivity critically affects Earth's thermal structure, evolution, and dynamics, as it controls the magnitude of thermal and compositional sources required to sustain a geodynamo over Earth's history. Here we directly measured thermal conductivities of solid Fe and Fe-Si alloys up to 144GPa and 3300K. 15 at% Si alloyed in Fe substantially reduces its conductivity by about 2 folds at 132GPa and 3000K. An outer core with 15 at% Si would have a conductivity of about 20Wm(-1) K-1, lower than pure Fe at similar pressure-temperature conditions. This suggests a lower minimum heat flow, around 3 TW, across the core-mantle boundary than previously expected, and thus less thermal energy needed to operate the geodynamo. Our results provide key constraints on inner core age that could be older than two billion-years. Thermal conductivity of Earth's core affects Earth's thermal structure, evolution and dynamics. Based on thermal conductivity measurements of iron-silicon alloys at high pressure and temperature conditions, the authors here propose Earth's inner core could be older than previously expected.
View Full Publication open_in_new
Abstract
The synthesis of polynitrogen compounds is of great importance due to their potential as high-energy-density materials (HEDM), but because of the intrinsic instability of these compounds, their synthesis and stabilization is a fundamental challenge. Polymeric nitrogen units which may be stabilized in compounds with metals at high pressure are now restricted to non-branched chains with an average N-N bond order of 1.25, limiting their HEDM performances. Herein, we demonstrate the synthesis of a novel polynitrogen compound TaN5 via a direct reaction between tantalum and nitrogen in a diamond anvil cell at circa 100 GPa. TaN5 is the first example of a material containing branched all-single-bonded nitrogen chains [N-5(5-)](infinity). Apart from that we discover two novel Ta-N compounds: TaN4 with finite N-4(4-) chains and the incommensurately modulated compound TaN2-x, which is recoverable at ambient conditions.
View Full Publication open_in_new
Abstract
Following the discovery of high-temperature superconductivity in the La-H system, we studied the formation of new chemical compounds in the barium-hydrogen system at pressures from 75 to 173GPa. Using in situ generation of hydrogen from NH3BH3, we synthesized previously unknown superhydride BaH12 with a pseudocubic (fcc) Ba sublattice in four independent experiments. Density functional theory calculations indicate close agreement between the theoretical and experimental equations of state. In addition, we identified previously known P6/mmm-BaH2 and possibly BaH10 and BaH6 as impurities in the samples. Ab initio calculations show that newly discovered semimetallic BaH12 contains H-2 and H-3(-) molecular units and detached H-12 chains which are formed as a result of a Peierls-type distortion of the cubic cage structure. Barium dodecahydride is a unique molecular hydride with metallic conductivity that demonstrates the superconducting transition around 20K at 140GPa. Metallization of pure hydrogen via overlapping of electronic bands requires high pressure above 3 Mbar. Here the authors study the Ba-H system and discover a unique superhydride BaH12 that contains molecular hydrogen, which demonstrates metallic properties and superconductivity below 1.5 Mbar.
View Full Publication open_in_new
Abstract
Carbon-bearing phases show a rich variety of structural transitions as an adaptation to pressure. Of particular interest is the crossover from sp(2) carbon to sp(3) carbon, as physical and chemical properties of carbon in these distinct electronic configurations are very different. In this chapter we review pressure-induced sp(2)-sp(3) transitions in elemental carbon, carbonates, and hydrocarbons.
View Full Publication open_in_new
Abstract
The application of pressure has been speculated to boost the search for high-temperature superconductors, especially in superhydrides. However, the applied pressure as high as hundreds of GPa needed to create superconductivity in those materials limits their technological application. Finding a route to achieve the high-temperature superconductivity at near-ambient conditions is attractive. By choosing a phase-change alloy Ge2Sb2Te5, we study the phase evolution of this material with pressure from the trigonal phase through the amorphous to the body-centered cubic one by the measurements of x-ray diffraction, Raman scattering, resistivity, and Hall coefficient. Superconductivity is observed to take place in the last two phases and can maintain at nearly ambient pressure in the decompression run. Pressure-induced disorder is found to be the key for holding superconductivity in the compressed phase-change alloy.
View Full Publication open_in_new
Abstract
Nitrogen and water are very abundant in nature; however, the way they chemically react at extreme pressure-temperature conditions is unknown. Below 6 GPa, they have been reported to form clathrate compounds. Here, we present Raman spectroscopy and x-ray diffraction studies in the H2O-N-2 system at high pressures up to 140 GPa. We find that clathrates, which form locally in our diamond cell experiments above 0.3 GPa, transform into a fine grained state above 6 GPa, while there is no sign of formation of mixed compounds. We point out size effects in fine grained crystallites, which result in peculiar Raman spectra in the molecular regime, but x-ray diffraction shows no additional phase or deviation from the bulk behavior of familiar solid phases. Moreover, we find no sign of ice doping by nitrogen, even in the regimes of stability of nonmolecular nitrogen.
View Full Publication open_in_new
Abstract
Synthesis and characterization of nitrogen-rich materials is important for the design of novel high energy density materials due to extremely energetic low-order nitrogen-nitrogen bonds. The balance between the energy output and stability may be achieved if polynitrogen units are stabilized by resonance as in cyclo-N-5(-) pentazolate salts. Here we demonstrate the synthesis of three oxygen-free pentazolate salts Na2N5, NaN5 and NaN5 center dot N-2 from sodium azide NaN3 and molecular nitrogen N-2 at similar to 50 GPa. NaN5 center dot N-2 is a metal-pentazolate framework (MPF) obtained via a self-templated synthesis method with nitrogen molecules being incorporated into the nanochannels of the MPF. Such self-assembled MPFs may be common in a variety of ionic pentazolate compounds. The formation of Na2N5 demonstrates that the cyclo-N-5 group can accommodate more than one electron and indicates the great accessible compositional diversity of pentazolate salts.
View Full Publication open_in_new
Abstract
Inspired by the rich physical properties of IV-VI compounds, we choose polycrystalline Pb0.99Cr0.01Se to investigate its structural, vibrational, and electrical transport properties under pressure up to 50 GPa. The structural transitions from the B1 to Pnma phase and then to the B2 phase in this sample are verified by the x-ray diffraction and Raman scattering measurements. The formation of the intermediate phase is suggested to be mediated by Peierls distortion, and the broad hump in the temperature-dependent resistivity in the intermediate phase gives further evidence of this phenomenon. When the material evolves into the B2 phase, superconductivity is observed to emerge, accompanied by suppressing the broad hump of resistivity at intermediate temperatures. Meanwhile, Hall coefficient measurements indicate that the carrier type changes during the structural transitions. These results suggest that the superconductivity in the B2 phase for this material is originated by "melting" the Peierls lattice distortion. By extending the present findings to other similar IV-VI semiconductors, we propose that all group IV-VI compounds could exhibit superconductivity in their B2 phase due to the lattice melting at high pressures.
View Full Publication open_in_new
Abstract
Most of the studied two-dimensional (2D) materials are based on highly symmetric hexagonal structural motifs. In contrast, lower-symmetry structures may have exciting anisotropic properties leading to various applications in nano-electronics. In this work we report the synthesis of nickel diazenide NiN2 which possesses atomic-thick layers comprised of Ni2N3 pentagons forming Cairo-type tessellation. The layers of NiN2 are weakly bonded with the calculated exfoliation energy of 0.72 J/m(2), which is just slightly larger than that of graphene. The compound crystallizes in the space group of the ideal Cairo tiling (P4/mbm) and possesses significant anisotropy of elastic properties. The single-layer NiN2 is a direct-band-gap semiconductor, while the bulk material is metallic. This indicates the promise of NiN2 to be a precursor of a pentagonal 2D material with a tunable direct band gap.
View Full Publication open_in_new
Abstract
The high-precision X-ray diffraction setup for work with diamond anvil cells (DAC5) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 682
  • Page 683
  • Page 684
  • Page 685
  • Current page 686
  • Page 687
  • Page 688
  • Page 689
  • Page 690
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025