Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
A new method for measuring melting temperatures in the laser-heated diamond cell is described. This method circumvents previous problems associated with the sample instability, thermal runaway, and chemical reactions. Samples were heated with a single, 20 milliseconds rectangular pulse from a fiber laser, monitoring their thermal response with a fast photomultiplier while measuring the steady state temperature with a CCD spectrometer. The samples were recovered and analyzed using scanning electron microscopy. Focused ion beam milling allowed to examine both the lateral and the vertical solid-liquid boundaries. Ambient pressure tests reproducibly yielded the known melting temperatures of rhenium and molybdenum. Melting of Re was measured to 50 GPa, a 5-fold extension of previous data. The refractory character of Re is drastically enhanced by pressure, in contrast to Mo. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730595]
View Full Publication open_in_new
Abstract
The properties of solid and liquid phases of H2O at high pressure and temperature remain an active area of research. In this study, Brillouin spectroscopy has been used to determine the temperature dependence of sound velocities in H2O as a function of pressure up to 26 GPa through the phase field of ice VII and into the liquid to a maximum temperature of 1200 K. The Brillouin shift of the quasi-longitudinal acoustic mode moves to lower frequencies upon melting at each pressure. As a test of the method, measurements of the melting of Ar by Brillouin scattering at several pressures show a similar behavior for the acoustic mode, and measured melting points are consistent with previous results. The results of H2O melting are consistent with previously reported melting curves below 20 GPa. The data at higher pressure indicate that ice melts at a higher temperature than a number of previous studies have indicated.
View Full Publication open_in_new
Abstract
Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa.
View Full Publication open_in_new
Abstract
We demonstrate a new level of precision in measuring melting temperatures at high pressure using laser flash heating in a diamond cell followed by an analysis using scanning electron microscopy and focused ion beam milling. The new measurements on tantalum put unprecedented constraints on its highly debated melting slope, calling for a reevaluation of theoretical, shock compression, and diamond cell approaches to determine melting at high pressure. X-ray analysis of the recovered samples confirmed the absence of chemical reactions, which likely played a significant role in previous experiments.
View Full Publication open_in_new
Abstract
Human emissions of CO2 now outpace natural sources by two orders of magnitude. The current concentration of CO2 has not been substantially exceeded in the past 30 million years. Multiple model exercises indicate that consuming all fossil fuels would result in concentrations more than double present levels, even after 10,000 years. The global warming effect of carbon emissions appears within 5-7 years. However, since the effect of present infrastructure over its expected life would only modestly increase CO2 concentrations and global temperature, human choices over its replacement will decisively influence ultimate carbon impacts, both short-term and long-term.
View Full Publication open_in_new
Abstract
Global carbon emissions continue to acidify the oceans, motivating growing concern for the ability of coral reefs to maintain net positive calcification rates. Efforts to develop robust relationships between coral reef calcification and carbonate parameters such as aragonite saturation state ((arag)) aim to facilitate meaningful predictions of how reef calcification will change in the face of ocean acidification. Here we investigate natural trends in carbonate chemistry of a coral reef flat over diel cycles and relate these trends to benthic carbon fluxes by quantifying net community calcification and net community production. We find that, despite an apparent dependence of calcification on (arag) seen in a simple pairwise relationship, if the dependence of net calcification on net photosynthesis is accounted for, knowing (arag) does not add substantial explanatory value. This suggests that, over short time scales, the control of (arag) on net calcification is weak relative to factors governing net photosynthesis.
View Full Publication open_in_new
Abstract
The Earth warms both when fossil fuel carbon is oxidized to carbon dioxide and when greenhouse effect of carbon dioxide inhibits longwave radiation from escaping to space. Various important time scales and ratios comparing these two climate forcings have not previously been quantified. For example, the global and time-integrated radiative forcing from burning a fossil fuel exceeds the heat released upon combustion within 2 months. Over the long lifetime of CO2 in the atmosphere, the cumulative CO2-radiative forcing exceeds the amount of energy released upon combustion by a factor >100,000. For a new power plant, the radiative forcing from the accumulation of released CO2 exceeds the direct thermal emissions in less than half a year. Furthermore, we show that the energy released from the combustion of fossil fuels is now about 1.71% of the radiative forcing from CO2 that has accumulated in the atmosphere as a consequence of historical fossil fuel combustion.
View Full Publication open_in_new
Abstract
The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this study, a global climate model is used to evaluate the differences in the climate response to SRM by uniform solar constant reduction and stratospheric aerosols. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1 K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by similar to 23 % and direct radiation decreases by about 9 % in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (similar to 1.0 %) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2 % decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (similar to 8 %) and net primary productivity (similar to 3 %). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and height distribution of aerosols is discussed.
View Full Publication open_in_new
Abstract
Changes in sea ice cover have important consequences for both Earth's energy budget and atmospheric dynamics. Sea ice acts as a positive feedback in the climate system, amplifying effects of radiative forcing while also affecting the meridional and interhemispheric temperature gradients that can impact mid-and low latitude atmospheric circulation. In this study, we partition and evaluate the effects of changing sea ice cover on global warming using a set of simulations with active and suppressed sea ice response. Two aspects of CO2-induced sea ice changes are investigated: (1) the effect of changing sea ice cover on global and local temperature changes; and (2) the impact of sea ice loss on atmospheric circulation and extreme weather events. We find that in the absence of sea ice decline, global temperature response decreases by 21-37%, depending on the sea ice treatment and the CO2 forcing applied. Weakened global warming in the absence of changes in sea ice cover is not only due to a decreased high latitude warming but is also a consequence of a weaker tropical warming. In the northern midlatitudes, sea ice decline affects the magnitude and sign of zonal wind response to global warming in the winter and autumn seasons. Presence or absence of sea ice cover impacts the intensity and frequency of winter extreme precipitation and temperature events (temperature minima, number of heavy precipitation days and number of ice days). For some of the analyzed extreme weather indices, the difference between the responses with and without sea ice decline is eliminated when taking into account the amplifying effect of sea ice loss on hemispheric warming. However, in other cases, we find the influence of higher order factors, exerting weaker but opposing effects than those expected from the global temperature increase.
View Full Publication open_in_new
Abstract
The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 640
  • Page 641
  • Page 642
  • Page 643
  • Current page 644
  • Page 645
  • Page 646
  • Page 647
  • Page 648
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025