Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We study Mn substitution for Ti in BaTiO3 with and without compensating oxygen vacancies using density functional theory (DFT) in combination with dynamical mean-field theory (DMFT). We find strong charge and spin fluctuations. Without compensating oxygen vacancies, the ground state is found to be a quantum superposition of two distinct atomic valences, 3d(4) and 3d(5). Introducing a compensating oxygen vacancy at a neighboring site reduces both charge and spin fluctuations due to the reduction of electron hopping from Mn to its ligands. As a consequence, valence fluctuations are reduced, and the valence is closely fixed to the high spin 3d(5) state. Here we show that inclusion of charge and spin fluctuations is necessary to obtain an accurate ground state of transition metal-doped ferroelectrics.
View Full Publication open_in_new
Abstract
The chemical stability of solid cubane under highpressure was examined with in situ Raman spectroscopy and synchrotron powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) up to 60 GPa. The Raman modes associated with solid cubane were assigned by comparing experimental data with calculations based on density functional perturbation theory, and low-frequency lattice modes are reported for the first time. The equation of state of solid cubane derived from the PXRD measurements taken during compression gives a bulk modulus of 14.5(2) GPa. In contrast with previous work and chemical intuition, PXRD and Raman data indicate that solid cubane exhibits anomalously large stability under extreme pressure, despite its immensely strained 90 degrees C-C-C bond angles.
View Full Publication open_in_new
Abstract
Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO(2), NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multinuclear solid-state NMR. The Al-27 triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al (Al-[4]) without forming Al-[5,Al-6]. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. C-13 MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including Si-[4](CO3)Si-[4], Si-[4](CO3)Al-[4], Al-[4](CO3)Al-[4], and free CO32-. The fraction of Si-[4](CO3)Al-[4] increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for Si-29 NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure.
View Full Publication open_in_new
Abstract
We report the catalyst-free synthesis of monolithic mesoporous nanopolycrystalline diamond from periodic mesoporous carbon at pressures between 15 and 21 GPa and a temperature of 1300 degrees C. We investigated the pressure-dependence of the porosity with 3-dimensional electron tomography. We have observed that surface areas increase from 56 to 90, 138 m(2) g(-1), and porosities increase from 10, 24, to 33% for materials produced at 15, 18, and 21 GPa, respectively. The increased porosity at higher pressure may be due to the earlier onset of the nucleation of diamond at higher pressure. (C) 2018 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
View Full Publication open_in_new
Abstract
We compute the thermal conductivity and electrical resistivity of solid hcp Fe to pressures and temperatures of Earth's core. We find significant contributions from electron-electron scattering, usually neglected at high temperatures in transition metals. Our calculations show a quasilinear relation between the electrical resistivity and temperature for hcp Fe at extreme high pressures. We obtain thermal and electrical conductivities that are consistent with experiments considering reasonable error. The predicted thermal conductivity is reduced from previous estimates that neglect electron-electron scattering. Our estimated thermal conductivity for the outer core is 77 +/- 10 Wm(-1) K-1 and is consistent with a geodynamo driven by thermal convection.
View Full Publication open_in_new
Abstract
Subduction is a key process for linking the carbon cycle between the Earth's surface and its interior. Knowing the carbonation and decarbonation processes in the subduction zone is essential for understanding the global deep carbon cycle. In particular, the potential role of hydrocarbon fluids in subduction zones is not well understood and has long been debated. Here we report graphite and light hydrocarbon-bearing inclusions in the carbonated eclogite from the Southwest (S.W.) Tianshan subduction zone, which is estimated to have originated at a depth of at least 80 kilometers. The formation of graphite and light hydrocarbon likely results from the reduction of carbonate under low oxygen fugacity (similar to FMQ - 2.5 log units). To better understand the origin of light hydrocarbons, we also investigated the reaction between iron-bearing carbonate and water under conditions relevant to subduction zone environments using large-volume high-pressure apparatus. Our high-pressure experiments provide additional constraints on the formation of abiotic hydrocarbons and graphite/diamond from carbonate-water reduction. In the experimental products, the speciation and concentration of the light hydrocarbons including methane (CH4), ethane (C2H6), and propane (C3H8) were unambiguously determined using gas chromatograph techniques. The formation of these hydrocarbons is accompanied by the formation of graphite and oxidized iron in the form of magnetite (Fe3O4). We observed the identical mineral assemblage (iron-bearing dolomite, magnetite, and graphite) associated with the formation of the hydrocarbons in both naturally carbonated eclogite and the experimental run products, pointing toward the same formation mechanism. The reduction of the carbonates under low oxygen fugacity is, thus, an important mechanism in forming abiotic hydrocarbons and graphite/diamond in the subduction zone settings. (C) 2018 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
Silicon clathrate, an important allotrope of silicon, has attractive opto-electronic properties for energy applications. However, it remains an experimental challenge to synthesize electrically undoped, intrinsic clathrate. Here we show, through high-throughput computer modeling, that unconventional silicon phases spontaneously nucleate from liquid silicon in the presence of noble gases under high pressure and high temperature. In particular, our results show that a medium-sized noble gas, for example, argon, can trigger the nucleation and growth of inert-gas silicon clathrate, whereas a small noble gas such as helium is able to induce the formation of an unconventional, inclusion-type compound Si2He. The formation of both silicon phases can be attributed to the same thermodynamic and kinetic rationale that explains the crystallization of clathrate hydrate, an isostructural analog. Our findings, along with the gained molecular insights, thus strongly suggest a viable experimental synthesis route for these silicon phases using noble gases at high pressure.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 572
  • Page 573
  • Page 574
  • Page 575
  • Current page 576
  • Page 577
  • Page 578
  • Page 579
  • Page 580
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025