Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13% for S-33 are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed S-36 depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant S-36 anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples.
View Full Publication open_in_new
Abstract
Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13% for S-33 are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed S-36 depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant S-36 anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples.
View Full Publication open_in_new
Abstract
Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state C-13 NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites.
View Full Publication open_in_new
Abstract
Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state C-13 NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites.
View Full Publication open_in_new
Abstract
Although focused ion beam (FIB) microscopy has been used successfully for milling patterns and creating ultra-thin electron and soft X-ray transparent sections of polymers and other soft materials, little has been documented regarding FIB-induced damage of these materials beyond qualitative evaluations of microstructure. In this study, we sought to identify steps in the FIB preparation process that can cause changes in chemical composition and bonding in soft materials. The impact of various parameters in the FIB-scanning electron microscope (SEM) sample preparation process, such as final milling voltage, temperature, ion beam overlap and mechanical stability of soft samples, was evaluated using two test-case materials systems: polyacrylamide, a low melting-point polymer, and Wyodak lignite coal, a refractory organic material. We evaluated changes in carbon bonding in the samples using X-ray absorption near-edge structure spectroscopy (XANES) at the carbon K edge and compared these samples with thin sections that had been prepared mechanically using ultramicrotomy. Minor chemical changes were induced in the coal samples during FIB-SEM preparation, and little effect was observed by changing ion-beam parameters. However, polyacrylamide was particularly sensitive to irradiation by the electron beam, which drastically altered the chemistry of the sample, with the primary damage occurring as an increase in the amount of aromatic carbon bonding (C=C). Changes in temperature, final milling voltage and beam overlap led to small improvements in the quality of the specimens. We outline a series of best practices for preparing electron and soft X-ray transparent samples, with respect to preserving chemical structure and mechanical stability of soft materials using the FIB.
View Full Publication open_in_new
Abstract
Although focused ion beam (FIB) microscopy has been used successfully for milling patterns and creating ultra-thin electron and soft X-ray transparent sections of polymers and other soft materials, little has been documented regarding FIB-induced damage of these materials beyond qualitative evaluations of microstructure. In this study, we sought to identify steps in the FIB preparation process that can cause changes in chemical composition and bonding in soft materials. The impact of various parameters in the FIB-scanning electron microscope (SEM) sample preparation process, such as final milling voltage, temperature, ion beam overlap and mechanical stability of soft samples, was evaluated using two test-case materials systems: polyacrylamide, a low melting-point polymer, and Wyodak lignite coal, a refractory organic material. We evaluated changes in carbon bonding in the samples using X-ray absorption near-edge structure spectroscopy (XANES) at the carbon K edge and compared these samples with thin sections that had been prepared mechanically using ultramicrotomy. Minor chemical changes were induced in the coal samples during FIB-SEM preparation, and little effect was observed by changing ion-beam parameters. However, polyacrylamide was particularly sensitive to irradiation by the electron beam, which drastically altered the chemistry of the sample, with the primary damage occurring as an increase in the amount of aromatic carbon bonding (C=C). Changes in temperature, final milling voltage and beam overlap led to small improvements in the quality of the specimens. We outline a series of best practices for preparing electron and soft X-ray transparent samples, with respect to preserving chemical structure and mechanical stability of soft materials using the FIB.
View Full Publication open_in_new
Abstract
Insoluble organic matter (IOM) isolated from 22 carbonaceous and ordinary chondrites spanning a wide range of groups and petrologic types were analyzed using Fourier transform infrared spectroscopy (FTIR). Based on common IR spectral features, it is observed that IOM falls into 4 molecularly distinct groups (designated here as A through D). Spectral group A includes type 1 and 2 chondrites and exhibits intense aliphatic C-H and carboxyl vibrational peaks. Spectral group B includes the least metamorphosed type 3 chondrites and Tagish Lake, and exhibits weaker aliphatic and carboxyl vibrational intensity. Spectral groups C and D include metamorphosed type >= 3.1 chondrites and a heated CM chondrite. The carbonyl stretching features in spectral groups C and D differ from that in spectral groups A and B and from each other. In spectral group C, the carbonyl stretching is assigned to cyclic unsaturated lactones; in spectral group D carbonyl exists predominantly in the form of unsaturated ketone moieties. Both spectral groups C and D have a relatively narrow band structure around 1210 cm(-1) (assigned to aromatic skeletal modes) as compared with spectral groups A and B, which is consistent with the formation of more condensed aromatics by extensive thermal metamorphism. The differences in carbonyl structures in spectral groups C and D are not the result of different effective metamorphic temperatures, rather these differences likely result from variation in the activity of water and oxygen at different stages of parent body metamorphism. Such environmental variations must be local phenomena in the parent bodies as there is no correlation between spectral grouping and chondrite class or group. (C) 2011 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
Insoluble organic matter (IOM) isolated from 22 carbonaceous and ordinary chondrites spanning a wide range of groups and petrologic types were analyzed using Fourier transform infrared spectroscopy (FTIR). Based on common IR spectral features, it is observed that IOM falls into 4 molecularly distinct groups (designated here as A through D). Spectral group A includes type 1 and 2 chondrites and exhibits intense aliphatic C-H and carboxyl vibrational peaks. Spectral group B includes the least metamorphosed type 3 chondrites and Tagish Lake, and exhibits weaker aliphatic and carboxyl vibrational intensity. Spectral groups C and D include metamorphosed type >= 3.1 chondrites and a heated CM chondrite. The carbonyl stretching features in spectral groups C and D differ from that in spectral groups A and B and from each other. In spectral group C, the carbonyl stretching is assigned to cyclic unsaturated lactones; in spectral group D carbonyl exists predominantly in the form of unsaturated ketone moieties. Both spectral groups C and D have a relatively narrow band structure around 1210 cm(-1) (assigned to aromatic skeletal modes) as compared with spectral groups A and B, which is consistent with the formation of more condensed aromatics by extensive thermal metamorphism. The differences in carbonyl structures in spectral groups C and D are not the result of different effective metamorphic temperatures, rather these differences likely result from variation in the activity of water and oxygen at different stages of parent body metamorphism. Such environmental variations must be local phenomena in the parent bodies as there is no correlation between spectral grouping and chondrite class or group. (C) 2011 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 490
  • Page 491
  • Page 492
  • Page 493
  • Current page 494
  • Page 495
  • Page 496
  • Page 497
  • Page 498
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025