Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The geosphere and biosphere coevolved and influenced Earth's biological and mineralogical diversity. Changing redox conditions influenced the availability of different transition metals, which are essential components in the active sites of oxidoreductases, proteins that catalyze electron transfer reactions across the tree of life. Despite its relatively low abundance in the environment, cobalt (Co) is a unique metal in biology due to its importance to a wide range of organisms as the metal center of vitamin B-12 (aka cobalamin, Cbl). Cbl is vital to multiple methyltransferase enzymes involved in energetically favorable metabolic pathways. It is unclear how Co availability is linked to mineral evolution and weathering processes. Here we examine important biological functions of Co, as well as chemical and geological factors that may have influenced the utilization of Co early in the evolution of life. Only 66 natural minerals are known to contain Co as an essential element. However, Co is incorporated as a minor element in abundant rock-forming minerals, potentially representing a reliable source of Co as a trace element in marine systems due to weathering processes. We developed a mineral weathering model that indicates that dissolved Co was potentially more bioavailable in the Archean ocean under low S conditions than it is today. Mineral weathering, redox chemistry, Co complexation with nitrogen-containing organics, and hydrothermal environments were crucial in the incorporation of Co in primitive metabolic pathways. These chemical and geological characteristics of Co can inform the biological utilization of other trace metals in early forms of life.
View Full Publication open_in_new
Abstract
Dissolved ions present in an aqueous environment may significantly improve biomolecule attachment at mineral surfaces through the formation of cooperative surface complexes. To test whether this phenomenon results in the selective adsorption of an organic species, we conducted batch adsorption experiments with an equimolar mixture of the amino acids aspartate, glycine, lysine, leucine, and phenylalanine onto powdered brucite [Mg(OH)(2)] at pH 10.2. We performed the batch experiments in triplicate both without and with 4.1 mM CaCl2. In experiments without CaCl2, we observed that up to 0.7 mu mol m(-2) of aspartate and about 0.4 mu mol m(-2) each of the remaining four amino acids adsorbed onto brucite. When we added CaCl2, we found that up to 1.6 mu mol m(-2) of aspartate selectively adsorbed onto the brucite surface relative to between 0.2 and 0.3 mu mol m(-2) of the other amino acids. We measured the brucite particle surface charge to be slightly positive without added CaCl2, but the surface charge becomes significantly more positive in the presence of CaCl2. Our results suggest that negatively charged molecules selectively and cooperatively adsorb onto brucite when CaCl2 is added to the system. This study emphasizes the importance of the dissolved ionic profile of a geochemical environment when evaluating the role of mineral surfaces in the evolution of prebiotic chemistry. The presence of dissolved ions at a mineral-water interface can selectively enhance the adsorption and concentration of specific molecules, which may serve as a key process in molecular self-organization and the assembly of proteins that are composed of metal-ligand complexes.
View Full Publication open_in_new
Abstract
The unit-cell dimensions and crystal structure of kyanite at various pressures up to 4.56 GPa were refined from single-crystal X-ray diffraction data. The bulk modulus is 193(1) GPa, assuming K' = 4.0. Calculated unit-strain tensors show that kyanite exhibits more isotropic compressibility than andalusite or sillimanite. The most and least compressible directions in the kyanite structure correspond approximately to the most and the least thermally expandable directions. The analysis of the distortion of the closest packing in kyanite indicates that the most compressible direction of the structure (along [012]) corresponds to the direction along which the closest-packed O monolayers are stacked. The bulk moduli for the A11, A12, A13, and A14 octahedra are 274(43), 207(14), 224(26), and 281(24) GPa, respectively, and those for the Si1 and Si2 tetrahedra are 322(80) and 400(95) GPa, respectively. Four AlO6 octahedra that all become less distorted at higher pressures do not display clearly dominant compression directions. The average unshared O-O distance for each octahedron is considerably more compressible than the shared O-O distance. The high-pressure behaviors of the All and A14 octahedra are very similar but different from those of the A12 and A13 octahedra. Bulk moduli for the three Al2SiO5 polymorphs (kyanite, sillimanite, and andalusite), as well as those for the AlO6 octahedra in their structures, appear to decrease linearly as their volumes increase. The significantly larger bulk modulus and more isotropic compressibility for kyanite than for andalusite or sillimanite are a consequence of the nearly cubic close-packed arrangement of O atoms and the complex edge-sharing among four distinct AlO6 octahedra in the kyanite structure.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 476
  • Page 477
  • Page 478
  • Page 479
  • Current page 480
  • Page 481
  • Page 482
  • Page 483
  • Page 484
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025