Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity ecosystern functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common pattems and differences in biodiversity functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
View Full Publication open_in_new
Abstract
Gliding robotic fish, which is a hybrid of underwater gliders and robotic fish, is energy efficient and highly maneuverable and holds strong promise for long-duration monitoring of underwater environments. In this paper, a novel scheme is proposed for autonomously sampling multiple water columns using gliding robotic fish. The scheme exploits energy-efficient spiral-down motion to sample each water column, followed by sagittal-plane glide-up toward the direction of the next water column. Once surfacing, the robot uses Global Positioning System guidance to reach the next column location through swimming. To enhance the path-tracking performance, a two-degree-of-freedom controller involving H-infinity control is used in the spiral motion, and a sliding-mode controller is employed to regulate the yaw angle during glide-up. The sampling scheme has been implemented on a gliding robotic fish prototype, "Grace," and verified first in pool experiments and then in field experiments involving the sampling of harmful algae concentration in the Wintergreen Lake, Michigan.
View Full Publication open_in_new
Abstract
Marine phytoplankton are a taxonomically and functionally diverse group of organisms that are key players in the most important biogeochemical cycles. Phytoplankton taxa show different resource utilization strategies (e.g. nutrient-uptake rates and cellular allocation) and traits. Therefore, acknowledging this diversity is crucial to understanding how elemental cycles operate, including the origin and dynamics of elemental ratios. In this paper, we focus on trait-based models as tools to study the role of phytoplankton diversity in the stoichiometric phenomenology observed in the laboratory and in the open ocean. We offer a compilation of known empirical results on stoichiometry and summarize how trait-based approaches have attempted to replicate these results. By contrasting the different ecological and evolutionary approaches available in the literature, we explore the strengths and limitations of the existing models. We thus try to identify existing gaps and challenges, and point to potential new directions that can be explored to fill these gaps. We aim to highlight the potential of including diversity explicitly in our modeling approaches, which can help us gain important knowledge about changes in local and global stoichiometric patterns.
View Full Publication open_in_new
Abstract
The theories developed in ecological stoichiometry (ES) are fundamentally based on traits. Traits directly linked to cell/body stoichiometry, such as nutrient uptake and storage, as well as the associated trade-offs, have the potential to shape ecological interactions such as competition and predation within ecosystems. Further, traits that indirectly influence and are influenced by nutritional requirements, such as cell/body size and growth rate, are tightly linked to organismal stoichiometry. Despite their physiological and ecological relevance, traits are rarely explicitly integrated in the framework of ES and, currently, the major challenge is to more closely inter-connect ES with trait-based ecology (TBE). Here, we highlight four interconnected nutrient trait groups, i.e., acquisition, body stoichiometry, storage, and excretion, which alter interspecific competition in autotrophs and heterotrophs. We also identify key differences between producer-consumer interactions in aquatic and terrestrial ecosystems. For instance, our synthesis shows that, in contrast to aquatic ecosystems, traits directly influencing herbivore stoichiometry in forested ecosystems should play only a minor role in the cycling of nutrients. We furthermore describe how linking ES and TBE can help predict the ecosystem consequences of global change. The concepts we highlight here allow us to predict that increasing N:P ratios in ecosystems should shift trait dominances in communities toward species with higher optimal N:P ratios and higher P uptake affinity, while decreasing N retention and increasing P storage.
View Full Publication open_in_new
Abstract
Temperature strongly affects phytoplankton growth rates, but its effect on communities and ecosystem processes is debated. Because phytoplankton are often limited by light, temperature should change community structure if it affects the traits that determine competition for light. Furthermore, the aggregate response of phytoplankton communities to temperature will depend on how changes in community structure scale up to bulk rates. Here, we synthesize experiments on 57 phytoplankton species to analyze how the growth-irradiance relationship changes with temperature. We find that light-limited growth, light-saturated growth, and the optimal irradiance for growth are all highly sensitive to temperature. Within a species, these traits are co-adapted to similar temperature optima, but light-limitation reduces a species' temperature optimum by similar to 5 degrees C, which may be an adaptation to how light and temperature covary with depth or reflect underlying physiological correlations. Importantly, the maximum achievable growth rate increases with temperature under light saturation, but not under strong light limitation. This implies that light limitation diminishes the temperature sensitivity of bulk phytoplankton growth, even though community structure will be temperature-sensitive. Using a database of primary production incubations, we show that this prediction is consistent with estimates of bulk phytoplankton growth across gradients of temperature and irradiance in the ocean. These results indicate that interactions between temperature and resource limitation will be fundamental for explaining how phytoplankton communities and biogeochemical processes vary across temperature gradients and respond to global change.
View Full Publication open_in_new
Abstract
Dolichospermum flos-aquae and Cylindrospermopsis raciborskii are two cyanobacteria species which cause harmful blooms around the world. Both these species share the capacity to fix atmospheric nitrogen in heterocytes (cell where fixation occurs). While Dolichospermum can express heterocytes at rather regular intervals across the filament, Cylindrospermopsis can only express heterocytes at the end of the filament. The aim of this study was to experimentally assess the role of heterocyte position in the eco-physiological responses of these bloom forming cyanobacteria. Replicated monocultures of each species were grown at different eutrophication scenarios (limiting and sufficient nitrogen and phosphorus concentrations, in factorial design). Dolichospermum reached high biomass regardless of the nitrogen (and phosphorus) provided, suggesting that this species could bloom in situations with and without nitrogen limitation. In contrast, Cylindrospermopsis reached high biomass only when nitrogen supply was high; its biomass was 15-20 times lower when relying on nitrogen fixation. Hence, despite its ability to fix nitrogen, blooms of Cylindrospermopsis would be expected only under high total nitrogen availability. In Dolichospermum heterocytes occurred only in the scenarios without supplied nitrogen while in Cylindrospermopsis heterocytes occurred regardless of nitrogen availability. Yet, in both species nitrogen fixation occurred (heterocytes were functional) only when nitrogen was limiting, and nitrogen fixation increased significantly at higher phosphorus concentration. Finally, in the absence of supplied nitrogen, filament length in Dolichospermum was the longest, while filaments in Cylindrospermopsis were the shortest (up to 13 times shorter than at nitrogen sufficiency). Therefore, heterocyte expression in Dolichospermum, and filament length in Cylindrospermopsis seem good proxies of nitrogen fixation. The eco-physiological responses recorded here help understand the distribution of these species along nutrient gradients in nature. (C) 2016 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
"It takes a village to finish (marine) science these days" Paraphrased from Curtis Huttenhower (the Human Microbiome project) The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into modelling projections. Using our community-wide approach we can reduce such protocol-driven variability in culture studies, and can begin to address more complex issues such as the effect of multiple environmental drivers on ocean biota.
View Full Publication open_in_new
Abstract
File List EPAdata.txt Description The EPAdata.txt file is a tab-delimited ASCII file. The file contains data on phytoplankton species richness and environmental variables of 540 lakes and reservoirs distributed across the continental USA. The lakes and reservoirs were sampled from 1973-1975 as part of the National Eutrophication Survey conducted by the U.S. EPA. Column definitions and checksum values: Name of waterbody State Type of waterbody (lake or reservoir) Latitude, SUM = 20585.85475 Longitude, SUM = -51798.3929 Altitude (in km), SUM = 304.5463 Lake area (in km2), SUM = 25453.51 Lake depth (in m), SUM = 4945.149999 Number of sampling days, SUM = 1592 Chlorophyll concentration (in mug/L), SUM = 11718.22239 Total nitrogen (in mg/L), SUM = 705.6529752 Total phosphorus (in mg/L), SUM = 70.3631407 Temperature (in °C), SUM = 10188.35764 Secchi depth (in m), SUM = 885.1552689 Species richness (number of phytoplankton species), SUM = 15875 There are no missing values. Copyright: CC-0
View Full Publication open_in_new
Abstract
Supplementary statistical methods. Copyright: CC-0
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 454
  • Page 455
  • Page 456
  • Page 457
  • Current page 458
  • Page 459
  • Page 460
  • Page 461
  • Page 462
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025