Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of M-V similar to-18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s(-)(1) seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s(-1) seen in broad absorption from some high-velocity material. Late-time spectra (similar to+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H alpha among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
View Full Publication open_in_new
Abstract
We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a similar to 22-25 M-circle dot yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong H alpha emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of similar to 22 M-circle dot. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity similar to 650 km s(-1), while the second, more energetic event ejected material at similar to 4500 km s(-1). Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected Ni-56 mass of <0.016 M-circle dot. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
View Full Publication open_in_new
Abstract
The La; Campanas Infrared Survey is a photometric redshift survey designed to study the evolution and clustering of evolved galaxies over the redshift range 1 < z < 2. The survey is motivated by the construction of a unique, wide-field infrared camera for the Las Campanas 2.5m telescope. The primary goals are to obtain infrared imaging of a square degree to K-s = 21.1 and J = 22.7 along with deep optical imaging in VRIz' We discuss the scientific and technical goals of the survey, and we present the first survey images obtained in April 1999.
View Full Publication open_in_new
Abstract
SN 1999aw was discovered during the first campaign of the Nearby Galaxies Supernova Search project. This luminous, slow-declining [Deltam(15)(B) = 0.81 +/- 0.03] Type Ia supernova was noteworthy in at least two respects. First, it occurred in an extremely low luminosity host galaxy that was not visible in the template images nor in initial subsequent deep imaging. Second, the photometric and spectral properties of this supernova indicate that it very likely was similar to the subclass of Type Ia supernovae whose prototype is SN 1999aa. This paper presents the BVRI and J(s)HK(s) light curves of SN 1999aw ( through similar to100 days past maximum light), as well as several epochs of optical spectra. From these data, we calculate the bolometric light curve and give estimates of the luminosity at maximum light and the initial Ni-56 mass. In addition, we present deep BVI images obtained recently with the Baade 6.5 m telescope at Las Campanas Observatory that reveal the remarkably low-luminosity host galaxy.
View Full Publication open_in_new
Abstract
We describe a compact cluster or group of massive red galaxies at discovered in one of the Gemini z = 1.5 Deep Deep Survey (GDDS) fields. Deep H- band imaging from the Hubble Space Telescope (HST) reveals a high density of red galaxies associated with a galaxy with a spectroscopic redshift of 1.51. These galaxies have spectral energy distributions (SEDs) that peak between 3.6 and 4.5 mu m, and fits to 12- band photometry reveal 12 or more galaxies with spectral shapes consistent with. Most are within similar to 170 comoving kpc of the z = 1.5 GDDS galaxy, and the enclosed stellar mass is >16 x 10(11) M circle dot. The colors of the most massive galaxies are close to those expected from passive evolution of simple stellar populations (SSPs) formed at much higher redshifts. We suggest that several of these galaxies will merge to form a single, very massive galaxy by the present day. This system may represent an example of a short- lived dense group or cluster core typical of the progenitors of massive clusters in the present day and suggests that the red sequence was in place in overdense regions at early times.
View Full Publication open_in_new
Abstract
Aims. We present new near-infrared (NIR) light-curve templates for fundamental (FU, J, H, K-S) and first overtone (FO, J) classical Cepheids. The new templates together with period-luminosity and period-Wesenheit (PW) relations provide Cepheid distances from single-epoch observations with a precision only limited by the intrinsic accuracy of the method adopted.
View Full Publication open_in_new
Abstract
We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 angstrom. Significant diversity is seen in the near-maximum-light spectra (similar to 2000-3500 angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminositiesmeasured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter Delta m(15)(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., similar to 0.4 mag versus similar to 0.2 mag for those with 0.8 mag < Delta m(15)(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by similar to 0.9 mag and similar to 2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.
View Full Publication open_in_new
Abstract
We present well-sampled UBVRIJHK photometry of SN 2002fk starting 12 days before maximum light through 122 days after peak brightness, along with a series of 15 optical spectra from -4 to +95 days since maximum. Our observations show the presence of C II lines in the early-time spectra of SN 2002fk, expanding at 11,000 km s(-1) and persisting until 8 days past maximum light with a velocity of similar to 9000 km s(-1). SN 2002fk is characterized by a small velocity gradient of. (upsilon) over dotS(i II) = 26 km s(-1) day(-1), possibly caused by an off-center explosion with the ignition region oriented toward the observer. The connection between the viewing angle of an off-center explosion and the presence of C II in the early-time spectrum suggests that the observation of C II could be also due to a viewing angle effect. Adopting the Cepheid distance to NGC 1309 we provide the first H-0 value based on near-infrared (near-IR) measurements of a Type Ia supernova (SN) between 63.0 +/- 0.8 (+/- 3.4 systematic) and 66.7 +/- 1.0 (+/- 3.5 systematic) kms(-1) Mpc(-1), depending on the absolute magnitude/decline rate relationship adopted. It appears that the near-IR yields somewhat lower (6%-9%) H-0 values than the optical. It is essential to further examine this issue by (1) expanding the sample of high-quality near-IR light curves of SNe in the Hubble flow, and (2) increasing the number of nearby SNe with near-IR SN light curves and precise Cepheid distances, which affords the promise to deliver a more precise determination of H-0.
View Full Publication open_in_new
Abstract
We report the late-time evolution of Type IIb supernova (SN IIb) 2013df. SN 2013df showed a dramatic change in its spectral features at similar to 1 yr after the explosion. Early on it showed typical characteristics shared by SNe IIb/Ib/Ic dominated by metal emission lines, while later on it was dominated by broad and flat-topped Ha and He I emissions. The late-time spectra are strikingly similar to SN IIb 1993J, which is the only previous example clearly showing the same transition. This late-time evolution is fully explained by a change in the energy input from the Co-56 decay to the interaction between the SN ejecta and dense circumstellar matter (CSM). The mass-loss rate is derived to be similar to(5.4 +/- 3.2) x 10(-5) M(circle dot)yr(-1) (for the wind velocity of similar to 20 km s(-1)), similar to SN 1993J but larger than SN IIb 2011dh by an order of magnitude. The striking similarity between SNe IIb 2013df and 1993J in the (candidate) progenitors and the CSM environments. and the contrast in these natures to SN 2011dh. infer that there is a link between the natures of the progenitor and the mass loss: SNe IIb with a more extended progenitor have experienced a much stronger mass loss in the final centuries toward the explosion. It might indicate that SNe IIb from a more extended progenitor are the explosions during a strong binary interaction phase, while those from a less extended progenitor have a delay between the strong binary interaction and the explosion.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 356
  • Page 357
  • Page 358
  • Page 359
  • Current page 360
  • Page 361
  • Page 362
  • Page 363
  • Page 364
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025