Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Stars with unusual properties can provide a wealth of information about rare stages of stellar evolution and exotic physics. However, determining the true nature of peculiar stars is often difficult. In this work, we conduct a systematic search for cool and luminous stars in the Magellanic Clouds with extreme variability, motivated by the properties of the unusual Small Magellanic Cloud star and Thorne-(Z) over dotytkow Object (T(Z) over dotO) candidate HV 2112. Using light curves from ASAS-SN, we identify 38 stars with surface temperatures T < 4800K, luminosities log(L/L-circle dot) > 4.3, variability periods >400 days, and variability amplitudes Delta V > 2.5 mag. Eleven of these stars possess the distinctive double-peaked light-curve morphology of HV 2112. We use the pulsation properties and derived occurrence rates for these 12 objects to constrain their nature. From comparisons to stellar populations and models, we find that one star may be a red supergiant with large-amplitude pulsations. For the other 11 stars, we derive current masses of similar to 5-10 M-circle dot, below the theoretical minimum mass of similar to 15 Me for T(Z) over dotOs to be stable, casting doubt on this interpretation. Instead, we find that the temperatures, luminosities, mass-loss rates (MLRs), and periods of these stars are consistent with predictions for super-asymptotic giant branch (s-AGB) stars that have begun carbon burning but have not reached the superwind phase. We infer lifetimes in this phase of similar to(1-7) x 10(4) yr, also consistent with an s-AGB interpretation. If confirmed, these objects would represent the first identified population of s-AGB stars, illuminating the transition between low- and high-mass stellar evolution.
View Full Publication open_in_new
Abstract
We present the multiwavelength analysis of the tidal disruption event (TDE) AT 2018hyz (ASASSN-18zj). From follow-up optical spectroscopy, we detect the first unambiguous case of resolved double-peaked Balmer emission in a TDE. The distinct line profile can be well-modeled by a low eccentricity (e 0.1) accretion disk extending out to similar to 100 R-p and a Gaussian component originating from non-disk clouds, though a bipolar outflow origin cannot be completely ruled out. Our analysis indicates that in AT 2018hyz, disk formation took place promptly after the most-bound debris returned to pericenter, which we estimate to be roughly tens of days before the first detection. Redistribution of angular momentum and mass transport, possibly through shocks, must occur on the observed timescale of about a month to create the large H alpha-emitting disk that comprises less than or similar to 5% of the initial stellar mass. With these new insights from AT 2018hyz, we infer that circularization is efficient in at least some, if not all optically bright, X-ray faint TDEs. In these efficiently circularized TDEs, the detection of double-peaked emission depends on the disk inclination angle and the relative strength of the disk contribution to the non-disk component, possibly explaining the diversity seen in the current sample.
View Full Publication open_in_new
Abstract
Van den Heuvel and Tauris argue that if the red giant star in the system 2MASS J05215658+4359220 has a mass of 1 solar mass (M-circle dot), then its unseen companion could be a binary composed of two 0.9 M. stars, making a triple system. We contend that the existing data are most consistent with a giant of mass 3.2(-1.0)(+1.0) M-circle dot, implying a black hole companion of 3.3(-0.7)(+2.8) M-circle dot
View Full Publication open_in_new
Abstract
The existence of optical-ultraviolet Tidal Disruption Events (TDEs) could be considered surprising because their electromagnetic output was originally predicted to be dominated by X-ray emission from an accretion disk. Yet over the last decade, the growth of optical transient surveys has led to the identification of a new class of optical transients occurring exclusively in galaxy centers, many of which are considered to be TDEs. Here we review the observed properties of these events, identified based on a shared set of both photometric and spectroscopic properties. We present a homogeneous analysis of 33 sources that we classify as robust TDEs, and which we divide into classes. The criteria used here to classify TDEs will possibly get updated as new samples are collected and potential additional diversity of TDEs is revealed. We also summarize current measurements of the optical-ultraviolet TDE rate, as well as the mass function and luminosity function. Many open questions exist regarding the current sample of events. We anticipate that the search for answers will unlock new insights in a variety of fields, from accretion physics to galaxy evolution.
View Full Publication open_in_new
Abstract
In November 2020, the Swift team announced an update to the UltraViolet and Optical Telescope calibration to correct for the loss of sensitivity over time. This correction affects observations in the three near-ultraviolet (UV) filters, by up to 0.3 mag in some cases. As UV photometry is critical to characterizing tidal disruption events (TDEs) and other peculiar nuclear outbursts, we recomputed published Swift data for TDEs and other singular nuclear outbursts with Swift photometry in 2015 or later as a service to the community. Using archival UV, optical, and infrared photometry, we ran host SED fits for each host galaxy. From these, we computed synthetic host magnitudes and host-galaxy properties. We calculated host-subtracted magnitudes for each transient and computed blackbody fits. In addition to the nuclear outbursts, we include the ambiguous transient ATLAS18qqn (AT2018cow), which has been classified as a potential TDE on an intermediate-mass black hole. Finally, with updated bolometric light curves, we recover the relationship of Hinkle et al., where more-luminous TDEs decay more slowly than less-luminous TDEs, with decreased scatter compared to the original relationship.
View Full Publication open_in_new
Abstract
Blazars are active galactic nuclei with their relativistic jets pointing toward the observer, comprising two major subclasses, flat-spectrum radio quasars (FSRQs) and BL Lac objects. We present multiwavelength photometric and spectroscopic monitoring observations of the blazar B2 1420+32, focusing on its outbursts in 2018-2020. Multiepoch spectra show that the blazar exhibited large-scale spectral variability in both its continuum and line emission, accompanied by dramatic gamma-ray and optical variability by factors of up to 40 and 15, respectively, on week to month timescales. Over the last decade, the gamma-ray and optical fluxes increased by factors of 1500 and 100, respectively. B2 1420+32 was an FSRQ with broad emission lines in 1995. Following a series of flares starting in 2018, it transitioned between BL Lac and FSRQ states multiple times, with the emergence of a strong Fe pseudocontinuum. Two spectra also contain components that can be modeled as single-temperature blackbodies of 12,000 and 5200 K. Such a collection of "changing-look" features has never been observed previously in a blazar. We measure gamma-ray-optical and interband optical lags implying emission-region separations of less than 800 and 130 gravitational radii, respectively. Since most emission-line flux variations, except the Fe continuum, are within a factor of 2-3, the transitions between FSRQ and BL Lac classifications are mainly caused by the continuum variability. The large Fe continuum flux increase suggests the occurrence of dust sublimation releasing more Fe ions in the central engine and an energy transfer from the relativistic jet to subrelativistic emission components.
View Full Publication open_in_new
Abstract
We present new photometric and spectroscopic observations of SN. 2019yvq, a Type Ia supernova (SN Ia) exhibiting several peculiar properties including an excess of UV/optical flux within days of explosion, a high Si II velocity, and a low peak luminosity. Photometry near the time of first light places new constraints on the rapid rise of the UV/optical flux excess. A near-infrared spectrum at +173.days after maximum light places strict limits on the presence of H or He emission, effectively excluding the presence of a nearby nondegenerate star at the time of explosion. New optical spectra, acquired at +128 and +150 days after maximum light, confirm the presence of [Ca II]lambda 7300 and persistent Ca II NIR triplet emission as SN.2019yvq transitions into the nebular phase. The lack of [O I]lambda 6300 emission disfavors the violent merger of two C/O white dwarfs (WDs) but the merger of a C/OWD with a He WD cannot be excluded. We compare our findings with several models in the literature postulated to explain the early flux excess including double-detonation explosions, Ni-56 mixing into the outer ejecta during ignition, and interaction with H- and He-deficient circumstellar material. Each model may be able to explain both the early flux excess and the nebular [Ca II] emission, but none of the models can reconcile the high photospheric velocities with the low peak luminosity without introducing new discrepancies.
View Full Publication open_in_new
Abstract
We present V-band photometry of the 20 000 brightest asteroids using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) between 2012 and 2018. We were able to apply the convex inversion method to more than 5000 asteroids with more than 60 good measurements in order to derive their sidereal rotation periods, spin axis orientations, and shape models. We derive unique spin state and shape solutions for 760 asteroids, including 163 new determinations. This corresponds to a success rate of about 15%, which is significantly higher than the success rate previously achieved using photometry from surveys. We derive the first sidereal rotation periods for additional 69 asteroids. We find good agreement in spin periods and pole orientations for objects with prior solutions. We obtain a statistical sample of asteroid physical properties that is sufficient for the detection of several previously known trends, such as the underrepresentation of slow rotators in current databases, and the anisotropic distribution of spin orientations driven by the nongravitational forces. We also investigate the dependence of spin orientations on the rotation period. Since 2018, ASAS-SN has been observing the sky with higher cadence and a deeper limiting magnitude, which will lead to many more new solutions in just a few years.
View Full Publication open_in_new
Abstract
We report on the search for electromagnetic counterparts to the nine gravitational-wave events with a >60 per cent probability of containing a neutron star during the third observing run (O3) of the Laser Interferometer Gravitational-Wave Observatory (LIGO)-Virgo Collaboration (LVC) with the All-Sky Automated Survey for SuperNovae (ASAS-SN). No optical counterparts associated with a gravitational-wave event were found. However, thanks to its network of telescopes, the average area visible to at least one ASAS-SN site during the first 10 h after the trigger contained similar to 30 per cent of the integrated source location probability. Through a combination of normal operations and target-of-opportunity observations, ASAS-SN observations of the highest probability fields began within 1 h of the trigger for four of the events. After 24 h, ASAS-SN observed >60 per cent of total probability for three events and >40 per cent for all but one of the events. This is the largest area coverage to a depth of g = 18.5 mag from any survey with published coverage statistics for seven of the nine events. With its observing strategy, five sites around the world, and a large field of view, ASAS-SN will be one of the leading surveys to optically search for nearby neutron star mergers during LVC fourth observation run (O4).
View Full Publication open_in_new
Abstract
SN 2017jgh is a type IIb supernova discovered by Pan-STARRS during the C16/C17 campaigns of the Kepler/K2 mission. Here, we present the Kepler/K2 and ground based observations of SN 2017jgh, which captured the shock cooling of the progenitor shock breakout with an unprecedented cadence. This event presents a unique opportunity to investigate the progenitors of stripped envelope supernovae. By fitting analytical models to the SN 2017jgh light curve, we find that the progenitor of SN 2017jgh was likely a yellow supergiant with an envelope radius of similar to 50-290 R-circle dot, and an envelope mass of similar to 0-1.7 M-circle dot. SN 2017jgh likely had a shock velocity of similar to 7500-10 300 km s(-1). Additionally, we use the light curve of SN 2017jgh to investigate how early observations of the rise contribute to constraints on progenitor models. Fitting just the ground based observations, we find an envelope radius of similar to 50-330 R-circle dot, an envelope mass of similar to 0.3-1.7 M-circle dot and a shock velocity of similar to 9000-15 000 km s(-1). Without the rise, the explosion time cannot be well constrained that leads to a systematic offset in the velocity parameter and larger uncertainties in the mass and radius. Therefore, it is likely that progenitor property estimates through these models may have larger systematic uncertainties than previously calculated.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 350
  • Page 351
  • Page 352
  • Page 353
  • Current page 354
  • Page 355
  • Page 356
  • Page 357
  • Page 358
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025