Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

    This 500-million-year-old trilobite from Utah has an organic-rich carapace that preserves a record of the original biomolecules. Credit: Robert Hazen.
    Breaking News
    November 17, 2025

    Chemical evidence of ancient life detected in 3.3-billion-year-old rocks

    Joe Berry and Lorenzo Rosa
    Breaking News
    November 14, 2025

    Two Carnegie Scientists Named 2025 Highly Cited Researchers

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Parent-of-origin-effect loci have non-Mendelian inheritance in which phenotypes are determined by either the maternal or paternal allele alone. In angiosperms, parent-of-origin effects can be caused by loci required for gametophyte development or by imprinted genes needed for seed development. Few parent-of-origin-effect loci have been identified in maize (Zea mays) even though there are a large number of imprinted genes known from transcriptomics. We screened rough endosperm (rgh) mutants for parent-of-origin effects using reciprocal crosses with inbred parents. Six maternal rough endosperm (mre) and three paternal rough endosperm (pre) mutants were identified with three mre loci mapped. When inherited from the female parent, mre/+ seeds reduce grain fill with a rough, etched, or pitted endosperm surface. Pollen transmission of pre mutants results in rgh endosperm as well as embryo lethality. Eight of the mutants had significant distortion from the expected one-to-one ratio for parent-of-origin effects. Linked markers for mre1, mre2, and mre3 indicated that the mutant alleles have no bias in transmission. Histological analysis of mre1, mre2, mre3, and pre*-949 showed altered timing of starch grain accumulation and basal endosperm transfer cell layer (BETL) development. The mre1 locus delays BETL and starchy endosperm development, while mre2 and pre*-949 cause ectopic starchy endosperm differentiation. We conclude that many parent-of-origin effects in maize have incomplete penetrance of kernel phenotypes and that there is a large diversity of endosperm developmental roles for parent-of-origin-effect loci.
View Full Publication open_in_new
Abstract
Flowering plants, like placental mammals, have an extensive maternal contribution toward progeny development. Plants are distinguished from animals by a genetically active haploid phase of growth and development between meiosis and fertilization, called the gametophyte. Flowering plants are further distinguished by the process of double fertilization that produces sister progeny, the endosperm and the embryo, of the seed. Because of this, there is substantial gene expression in the female gametophyte that contributes to the regulation of growth and development of the seed. A primary function of the endosperm is to provide growth support to its sister embryo. Several mutations in Zea mays subsp. mays have been identified that affect the contribution of the mother gametophyte to the seed. The majority affect both the endosperm and the embryo, although some embryo-specific effects have been observed. Many alter the pattern of expression of a marker for the basal endosperm transfer layer, a tissue that transports nutrients from the mother plant to the developing seed. Many of them cause abnormal development of the female gametophyte prior to fertilization, revealing potential cellular mechanisms of maternal control of seed development. These effects include reduced central cell size, abnormal architecture of the central cell, abnormal numbers and morphology of the antipodal cells, and abnormal egg cell morphology. These mutants provide insight into the logic of seed development, including necessary features of the gametes and supporting cells prior to fertilization, and set up future studies on the mechanisms regulating maternal contributions to the seed.
View Full Publication open_in_new
Abstract
On 17 August 2017, the Advanced LIGO(1) and Virgo(2) detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system(3). Less than two seconds after the merger, a gamma-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source(4-6). This sky region was subsequently observed by optical astronomy facilities(7), resulting in the identification(8-13) of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren'(14-18) (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder'(19): the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements(20,21), while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.
View Full Publication open_in_new
Abstract
The plant life cycle is characterized by the alternation of generations between genetically active diploid sporophytes and haploid gametophytes. The gametophytes of flowering plants are sexually dimorphic. While the male gametophyte consists of only three cells (two sperm and a vegetative cell) and is released by the parent sporophyte, the female gametophyte (or embryo sac) is more complex and remains imbedded within diploid sporophyte tissues. In maize, the female gametophyte is embedded in a large ovule surrounded with multiple nucellar cell layers impeding live-cell imaging approaches to study embryo sac functions. Here, we describe a simple protocol to visualize embryo sacs with hormonal fluorescent reporters by increasing accessibility of the female gametophyte. The method described is applicable for visualization of any fluorescent embryo sac reporter. The embryo sacs visualization method developed for maize could be extended to facilitate visualization of embryos sac in other important cereals like wheat, rice, and oats.
View Full Publication open_in_new
Abstract
Post-transcriptional gene regulation is robustly regulated by RNA-binding proteins (RBPs). Here we describe the collection of RNAs regulated by AUF1 (AU-binding factor 1), an RBP linked to cancer, inflammation and aging. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis reveals that AUF1 primarily recognizes U-/GU-rich sequences in mRNAs and noncoding RNAs and influences target transcript fate in three main directions. First, AUF1 lowers the steady-state levels of numerous target RNAs, including long noncoding RNA NEAT1, in turn affecting the organization of nuclear paraspeckles. Second, AUF1 does not change the abundance of many target RNAs, but ribosome profiling reveals that AUF1 promotes the translation of numerous mRNAs in this group. Third, AUF1 unexpectedly enhances the steady-state levels of several target mRNAs encoding DNA-maintenance proteins. Through its actions on target RNAs, AUF1 preserves genomic integrity, in agreement with the AUF1-elicited prevention of premature cellular senescence.
View Full Publication open_in_new
Abstract
The explosion of RNA-Seq data has enabled the identification of expressed genes without relying on gene models with biases toward open reading frames, allowing the identification of many more long noncoding RNAs (lncRNAs) in eukaryotes. Various tissue enrichment strategies and deep sequencing have also enabled the identification of an extensive list of genes expressed in maize gametophytes, tissues that are intractable to both traditional genetic and gene expression analyses. However, the function of very few genes from the lncRNA and gametophyte sets (or from their intersection) has been tested. Methods for isolating and identifying lncRNAs from gametophyte samples of maize are described here. This method is transferable to any maize gametophyte mutant enabling the development of gene networks involving both protein-coding genes and lncRNAs. Additionally, these methods can be adapted to apply to other grass model systems to test for evolutionary conservation of lncRNA expression patterns.
View Full Publication open_in_new
Abstract
Author summary
View Full Publication open_in_new
Abstract
The recent detection of a repeating fast radio burst (FRB) in an old globular cluster in M81 challenges traditional FRB formation mechanisms based on the magnetic activity of young neutron stars formed in core-collapse supernovae. Furthermore, the detection of this repeater in such a nearby galaxy implies a high local universe rate of similar events in globular clusters. Building off the properties inferred from the M81 FRB, we predict the number of FRB sources in nearby (d? 20 Mpc) galaxies with large globular cluster systems known. Incorporating the uncertain burst energy distribution, we estimate the rate of bursts detectable in these galaxies by radio instruments such as FAST and MeerKat. Of all local galaxies, we find M87 is the best candidate for FRB detections. We predict that M87's globular cluster system contains 0(10) FRB sources at present and that a dedicated radio survey (by either FAST or MeerKat) of 0(10) hr has a 90% probability of detecting a globular cluster FRB in M87. The detection of even a handful of additional globular cluster FRBs would provide invaluable constraints on FRB mechanisms and population properties. Previous studies have demonstrated young neutron stars formed following the collapse of dynamically formed massive white dwarf binary mergers may provide the most natural mechanism for these bursts. We explore the white dwarf merger scenario using a suite of N-body cluster models, focusing in particular on such mergers in M87's clusters. We describe a number of outstanding features of this scenario that in principle may be testable with an ensemble of observed FRBs in nearby globular clusters.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 230
  • Page 231
  • Page 232
  • Page 233
  • Current page 234
  • Page 235
  • Page 236
  • Page 237
  • Page 238
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025