An X-Ray Detected Group of Quiescent Early-Type Galaxies at z=1.6 in the Chandra Deep Field South

Tanaka, Masayuki; Finoguenov, Alexis; Mirkazemi, Mohammad; Wilman, David J.; Mulchaey, John S.; Ueda, Yoshihiro; Xue, Yongquan; Brandt, William N.; Cappelluti, Nico
2013
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN
DOI
10.1093/pasj/65.1.17
We report the discovery of an X-ray group of galaxies located at a high redshift of z = 1.61 in the Chandra Deep Field South. Based on 4 Ms Chandra data, the group is first identified as an extended X-ray source. We have used a wealth of deep multi-wavelength data to identify the optical counterpart-our red sequence finder detects a significant over-density of galaxies at z similar to 1.6. The brightest group galaxy is spectroscopically confirmed at z = 1.61, based on published spectroscopic redshifts. Using this as a central redshift of the group, we measure an X-ray luminosity of L0.1-2.4keV = (1.8 +/- 0.6) x 10(43) erg s(-1), which then translates into a group mass of (3.2 +/- 0.8) x 10(13) M-circle dot. This is the lowest-mass group ever confirmed at z > 1.5. Deep optical-nearIR images from CANDELS reveal that the group exhibits a surprisingly prominent red sequence, and most of the galaxies are consistent with a formation redshift of z(f) = 3. A detailed analysis of the spectral energy distributions of the group member candidates confirms that most of them are indeed passive galaxies. Furthermore, their structural parameters measured from near-IR CANDELS images show that they are morphologically early-type. The newly identified group at z = 1.61 is dominated by quiescent early-type galaxies, and the group appears to be similar to those in the local Universe. One possible difference is the high fraction of AGN-38(-20)(+23)% of the bright group member candidates are AGN, which might indicate a role for AGN in the quenching of star formation. However, a statistical sample of high-z groups is needed to draw a general picture of groups at this redshift. Such a sample will hopefully be available in near-future surveys.