Ultrahigh-pressure disordered eight-coordinated phase of Mg<sub>2</sub>GeO<sub>4</sub>: Analogue for super-Earth mantles
2022
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
DOI
10.1073/pnas.2114424119
Mg2GeO4 is important as an analog for the ultrahigh-pressure behavior of Mg2SiO4, a major component of planetary interiors. In this study, we have investigated magnesium germanate to 275 GPa and over 2,000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with the formation of a phase with disordered Mg and Ge, in which germanium adopts eightfold coordination with oxygen: the cubic, Th3P4-type structure. DFT computations suggest partial Mg-Ge order, resulting in a tetragonal I (4) over bar 2d structure indistinguishable from I (4) over bar 2d Th3P4 in our experiments. If applicable to silicates, the formation of this highly coordinated and intrinsically disordered phase may have important implications for the interior mineralogy of large, rocky extrasolar planets.