Sulfur isotopic signature of Earth established by planetesimal volatile evaporation
2021
NATURE GEOSCIENCE
DOI
10.1038/s41561-021-00838-6
How and when Earth's volatile content was established is controversial with several mechanisms postulated, including planetesimal evaporation, core formation and the late delivery of undifferentiated chondrite-like materials. The isotopes of volatile elements such as sulfur can be fractionated during planetary accretion and differentiation and thus are potential tracers of these processes. Using first-principles calculations, we examine sulfur isotope fractionation during core formation and planetesimal evaporation. We find no measurable sulfur isotope fractionation between silicate and metallic melts at core-forming conditions, indicating that the observed light sulfur isotope composition of the bulk silicate Earth relative to chondrites cannot be explained by metal-silicate fractionation. Our thermodynamic calculations show that sulfur evaporates mostly as H2S during planetesimal evaporation when nebular H-2 is present. The observed bulk Earth sulfur isotope signature and abundance can be reproduced by evaporative loss of about 90% sulfur mainly as H2S from molten planetesimals before nebular H-2 is dissipated. The heavy sulfur isotope composition of the Moon relative to the Earth is consistent with evaporative sulfur loss under 94-98% saturation condition during the Moon-forming giant impact. In summary, volatile evaporation from molten planetesimals before Earth's formation probably played a key role in establishing Earth's volatile element content.