Rebecca Bernstein combines observational astronomy with developing new instruments and techniques to study her objects of interest. She focuses on formation and evolution of galaxies by studying the chemistry of objects called extra galactic globular clusters—old, spherical compact groups of stars that are gravitationally bound. She also studies the stellar components of clusters of galaxies and is engaged in various projects related to dark matter and dark energy—the invisible matter and repulsive force that make up most of the universe.

 Although Bernstein joined Carnegie as a staff scientist in 2012, she has had a long history of spectrographic and imaging development, working with Carnegie’s Steve Shectman, among others, at Carnegie and elsewhere. A spectrograph separates light into its component wavelengths and is used to determine the chemistry of an object.  One such collaboration was the Magellan Inamori Kyocera Echelle (MIKE), which is known as a double-echelle spectrograph, meaning it has a double beam. It is a highly efficient, high-resolution spectrograph with complete optical wavelength coverage with minimal complexity, size, and cost.

 Bernstein has been involved in numerous other instrument projects. Currently, she is the project scientist on the Giant Magellan Telescope  (GMT) project an international consortium where she will provide technical and scientific leadership for the design and construction of the telescope. The GMT is a next-generation, extremely large telescope that, with seven segmented mirrors, will be 80 feet (24.5 meters) in diameter making its resolving power more than 10 times that of the Hubble Space Telescope.

 Bernstein received her A.B. in physics from Princeton University and a Ph. D. in astrophysics from Caltech. She was a Hubble and research fellow at Carnegie and an assistant and associate professor at the University of Michigan. She was also an associate and full professor at UC- Santa Cruz before joining Carnegie.  For more see http://www.gmto.org/pressrelease10.html  and http://obs.carnegiescience.edu/users/rab

Scientific Area: 

Explore Carnegie Science

Illustration by James Josephides, courtesy of Swinburne Astronomy Productions.
November 12, 2019

Pasadena, CA—A star traveling at ultrafast speeds after being ejected by the supermassive black hole at the heart of our galaxy was spotted by an international team of astronomers including Carnegie’s Ting Li and Alex Ji. Their work is published by Monthly Notices of the Royal Astronomical Society. Hurtling at the blistering speed of 6 million kilometers per hour, the star is moving so fast that it will leave the Milky Way and head into intergalactic space.

Called S5-HVS1, the star was discovered in the Grus, or Crane, constellation by lead author Sergey Koposov of Carnegie Mellon University as part of the Southern Stellar Stream Spectroscopic Survey led by Carnegie

Ancient gas cloud courtesy of the Max Planck Society.
November 8, 2019

Washington, DC— The discovery of a 13 billion-year-old cosmic cloud of gas enabled a team of Carnegie astronomers to perform the earliest-ever measurement of how the universe was enriched with a diversity of chemical elements.  Their findings reveal that the first generation of stars formed more quickly than previously thought. The research, led by recent Carnegie-Princeton fellow Eduardo Bañados and including Carnegie’s Michael Rauch and Tom Cooper, is published by The Astrophysical Journal.

The Big Bang started the universe as a hot, murky soup of extremely energetic particles that was rapidly expanding.  As this material spread out, it cooled,

Patrick McCarthy courtesy of GMTO
October 1, 2019

Pasadena, CA—Carnegie astronomer and Vice President of the Giant Magellan Telescope (GMT), Patrick McCarthy, has been appointed as the first Director of the National Science Foundation’s newly formed National Optical-Infrared Astronomy Research Laboratory (NSF’s OIR Lab).

McCarthy has been a member of the GMT project since its inception 15 years ago, helping to bring it from a sketch on a napkin to a 100-plus person organization with 12 U.S. and international partners. In 2008, 20 years into his tenure at Carnegie, McCarthy officially expanded his role when he accepted his current leadership position at GMT.

Working with then-Carnegie Observatories

lustración por Robin Dienel, cortesía de Carnegie Institution for Science.
September 26, 2019

Washington, DC—El satélite Transiting Exoplanet Survey Satellite (TESS) de la NASA ha observado por primera vez las secuelas de una estrella que fue violentamente desgarrada por un agujero negro supermasivo. El haber capturado en pleno desarrollo un evento tan poco común ayudará a los astrónomos a entender estos misteriosos fenómenos.

Las observaciones fueron publicadas en la revista científica The Astrophysical Journal y el estudio fue liderado por el astrónomo de la Institución Carnegie, Thomas Holoien. Holoien es uno de los miembros fundadores de la red internacional de telescopios que realizó el

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments.