Pressure dependence of the monoclinic phase in (1-x)Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) solid solutions

Ahart, Muhtar; Sinogeikin, Stanislav; Shebanova, Olga; Ikuta, Daijo; Ye, Zuo-Guang; Mao, Ho-kwang; Cohen, R. E.; Hemley, Russell J.
2012
PHYSICAL REVIEW B
DOI
10.1103/PhysRevB.86.224111
We combine high-pressure x-ray diffraction, high-pressure Raman scattering, and optical microscopy to investigate a series of (1 - x)Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) (PMN-xPT) solid solutions (x = 0.2, 0.3, 0.33, 0.35, 0.37, 0.4) in diamond anvil cells up to 20 GPa at 300 K. The Raman spectra show a peak centered at 380 cm(-1) starting above 6 GPa for all samples, in agreement with previous observations. X-ray diffraction measurements are consistent with this spectral change indicating a structural phase transition; we find that the triplet at the pseudocubic (220) Bragg peak merges into a doublet above 6 GPa. Our results indicate that the morphotropic phase boundary region (x = 0.33 - 0.37) with the presence of monoclinic symmetry persists up to 7 GPa. The pressure dependence of ferroelectric domains in PMN-0.32PT single crystals was observed using a polarizing optical microscope. The domain wall density decreases with pressure and the domains disappear at a modest pressure of 3 GPa. We propose a pressure-composition phase diagram for PMN-xPT solid solutions. DOI: 10.1103/PhysRevB.86.224111