Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Water droplet ripples outward in blue water
    Breaking News
    October 30, 2025

    How do planets get wet? Experiments show water creation during planet formation process

    Grassland with forest on the horizon
    Breaking News
    October 24, 2025

    Prolonged, extreme drought in grassland and shrubland risks Dust Bowl conditions

    "Macromolecular Metabiology," used for frontispiece of CIW publication 624, "Studies of Macromolecular Biosynthesis"
    Breaking News
    October 17, 2025

    From Atoms to Cells: A History of the Biophysics Section

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
From detailed abundance analysis of >100 Hamburg/ESO candidate extremely metal-poor (EMP) stars we find 45 with [Fe/H] < -3.0 dex. We identify a heretofore unidentified group: Ca-deficient stars with sub-solar [Ca/Fe] ratios and the lowest neutron-capture abundances; the Ca-deficient group comprises similar to 10% of the sample, excluding Carbon stars. Our radial velocity distribution shows that the carbon-enhanced stars with no s-process enhancements, CEMP-no, and which do not show C-2 bands are not preferentially binary systems. Ignoring Carbon stars, approximately 15% of our sample are strong (>= 5 sigma) outliers in one or more elements between Mg and Ni; this rises to similar to 19% if very strong (>= 10 sigma) outliers for Sr and Ba are included. Examples include: HE0305-0554 with the lowest [Ba/H] known; HE1012-1540 and HE2323-0256, two (non-velocity variable) C-rich stars with very strong [Mg, Al/Fe] enhancements; and HE1226-1149, an extremely r-process rich star.
View Full Publication open_in_new
Abstract
From chemical abundance analysis of stars in the Sagittarius dwarf spheroidal galaxy (Sgr), we conclude that the alpha-element deficiencies cannot be due to the Type Ia supernova (SN Ia) time-delay scenario of Tinsley. Instead, the evidence points to low [alpha/Fe] ratios resulting from an initial mass function (IMF) deficient in the highest mass stars. The critical evidence is the 0.4 dex deficiency of [O/Fe], [Mg/Fe], and other hydrostatic elements, contrasting with the normal trend of r-process [Eu/Fe] r with [Fe/H]. Supporting evidence comes from the hydrostatic element (O, Mg, Na, Al, Cu) [X/Fe] ratios, which are inconsistent with iron added to the Milky Way (MW) disk trends. Also, the ratio of hydrostatic to explosive (Si, Ca, Ti) element abundances suggests a relatively top-light IMF. Abundance similarities with the LMC, Fornax, and IC 1613 suggest that their a-element deficiencies also resulted from IMFs lacking the most massive SNe II. The top-light IMF, as well as the normal trend of r-process [Eu/Fe](r) with [Fe/H] in Sgr, indicates that massive SNe II (greater than or similar to 30M(circle dot)) are not major sources of r-process elements. High [La/Y] ratios, consistent with leaky-box chemical evolution, are confirmed but similar to 0.3 dex larger than theoretical asymptotic giant branch (AGB) predictions. This suggests that a substantial increase in the theoretical C-13 pocket in low-mass AGB stars is required. Sgr has the lowest [Rb/Zr] ratios known, consistent with pollution by low-mass (less than or similar to 2M(circle dot)) AGB stars near [Fe/H] = -0.6, likely resulting from leaky-box chemical evolution. The [Cu/O] trends in Sgr and the MW suggest that Cu yields increase with both metallicity and stellar mass, as expected from Cu production by the weak s-process in massive stars. Finally, we present an updated hyperfine splitting line list, an abundance analysis of Arcturus, and further develop our error analysis formalism.
View Full Publication open_in_new
Abstract
Context. The Galactic bulge is a massive, old component of the Milky Way. It is known to host a bar, and it has recently been demonstrated to have a pronounced boxy/peanut structure in its outer region. Several independent studies suggest the presence of more than one stellar populations in the bulge, with different origins and a relative fraction changing across the bulge area.
View Full Publication open_in_new
Abstract
We have studied the effects of various initial mass functions (IMFs) on the chemical evolution of the Sagittarius dwarf galaxy (Sgr). In particular, we tested the effects of the integrated galactic initial mass function (IGIMF) on various predicted abundance patterns. The IGIMF depends on the star formation rate and metallicity and predicts less massive stars in a regime of low star formation, as it is the case in dwarf spheroidals. We adopted a detailed chemical evolution model following the evolution of alpha-elements, Fe and Eu, and assuming the currently best set of stellar yields. We also explored different yield prescriptions for the Eu, including production from neutron star mergers. Although the uncertainties still present in the stellar yields and data prevent us from drawing firm conclusions, our results suggest that the IGIMF applied to Sgr predicts lower [alpha/Fe] ratios than classical IMFs and lower [hydrostatic/explosive] alpha-element ratios, in qualitative agreement with observations. In our model, the observed high [Eu/O] ratios in Sgr is due to reduced O production, resulting from the IGIMF mass cut-off of the massive oxygen-producing stars, as well as to the Eu yield produced in neutron star mergers, a more promising site than core-collapse supernovae, although many uncertainties are still present in the Eu nucleosynthesis. We find that a model, similar to our previous calculations, based on the late addition of iron from the Type Ia supernova time-delay (necessary to reproduce the shape of [X/Fe] versus [Fe/H] relations) but also including the reduction of massive stars due to the IGIMF, better reproduces the observed abundance ratios in Sgr than models without the IGIMF.
View Full Publication open_in_new
Abstract
We present new accurate abundances for five neutron-capture elements (Y, La, Ce, Nd, Eu) in 73 classical Cepheids located across the Galactic thin disk. Individual abundances are based on high spectral resolution (R similar to 38 000) and high signal-to-noise ratio (S/N similar to 50-300) spectra collected with UVES at ESO VLT for the DIONYSOS project. Taking into account similar Cepheid abundances provided by our group (111 stars) and available in the literature, we end up with a sample of 435 Cepheids covering a broad range in iron abundances (-1.6 < [Fe/H] < 0.6). We found, via homogeneous individual distances and abundance scales, well-defined gradients for the above elements. However, the slope of the light s-process element (Y) is at least a factor of two steeper than the slopes of heavy s- (La, Ce, Nd) and r- (Eu) process elements. The s-to-r abundance ratio ([La/Eu]) of Cepheids shows a well-defined anticorrelation with both Eu and Fe. On the other hand, Galactic field stars attain an almost constant value and display a mild enhancement in La only when they approach solar iron abundance. The [Y/Eu] ratio shows slight evidence of a correlation with Eu and, in particular, with iron abundance for field Galactic stars. We also investigated the s-process index ([hs/ls]) and we found a well-defined anticorrelation, as expected, between [La/Y] and iron abundance. Moreover, we found a strong correlation between [La/Y] and [La/Fe] and, in particular, a clear separation between Galactic and Sagittarius red giants. Finally, the comparison between predictions for low-mass asymptotic giant branch stars and the observed [La/Y] ratio indicate a very good agreement over the entire metallicity range covered by Cepheids. However, the observed spread at fixed iron content is larger than predicted by current models.
View Full Publication open_in_new
Abstract
Context. Several recent studies have demonstrated that the Galactic bulge hosts two components with di ff erent mean metallicities, and possibly different spatial distribution and kinematics. As a consequence, both the metallicity distribution and the radial velocity of bulge stars vary across di ff erent lines of sight.
View Full Publication open_in_new
Abstract
We have performed a differential line-by-line chemical abundance analysis, ultimately relative to the Sun, of nine very metal-poor main-sequence (MS) halo stars, near [Fe/H] = -2dex. Our abundances range from -2.66 <= [FeH] <= -1.40 dex with conservative uncertainties of 0.07 dex. We find an average [alpha/Fe] = 0.34 +/- 0.09 dex, typical of the Milky Way. While our spectroscopic atmosphere parameters provide good agreement with Hubble Space Telescope parallaxes, there is significant disagreement with temperature and gravity parameters indicated by observed colors and theoretical isochrones. Although a systematic underestimate of the stellar temperature by a few hundred degrees could explain this difference, it is not supported by current effective temperature studies and would create large uncertainties in the abundance determinations. Both 1D and < 3D > hydrodynamical models combined with separate 1D non-LTE effects do not yet account for the atmospheres of real metal-poor MS stars, but a fully 3D non-LTE treatment may be able to explain the ionization imbalance found in this work.
View Full Publication open_in_new
Abstract
Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the new Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes, which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 mu as. These parallax data were combined with HST Advanced Camera for Surveys photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02-0.03 mag. Six of these stars are on the main sequence (MS) (with -2.7 < [Fe/H] < -1.8) and are suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters (GCs). Using the abundances obtained by O'Malley et al., we find that standard stellar models using the VandenBerg & Clem color transformation do a reasonable job of matching five of the MS stars, with HD 54639 ([Fe/H] = -2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones that fit the parallax stars were used to determine the distances and ages of nine GCs (with -2.4 <= [Fe/H] <= -1.9). Averaging together the age of all nine clusters led to an absolute age of the oldest, most metal-poor GCs of 12.7 +/- 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.
View Full Publication open_in_new
Abstract
The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] greater than or similar to -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.
View Full Publication open_in_new
Abstract
We obtain high-resolution spectra of nine red giant branch stars in NGC 6681 and perform the first detailed abundance analysis of stars in this cluster. We confirm cluster membership for these stars based on consistent radial velocities of 214.5 +/- 3.7 km s(-1) and find a mean [Fe/H] = -1.63 +/- 0.07 dex and [alpha/Fe] = 0.42 +/- 0.11 dex. Additionally, we confirm the existence of a Na-O anti-correlation in NGC 6681 and identify two populations of stars with unique abundance trends. With the use of HST photometry from Sarajedini et al. and Piotto et al. we are able to identify these two populations as discrete sequences in the cluster CMD. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences in these populations, these results do help put constraints on possible polluter candidates.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 810
  • Page 811
  • Page 812
  • Page 813
  • Current page 814
  • Page 815
  • Page 816
  • Page 817
  • Page 818
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025