Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Cells under a microscope courtesy of Ethan Greenblatt
    Public Program

    Carnegie Science SOCIAL: Fun & Games

    Carnegie Science Investigators

    September 30

    7:00pm EDT

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Excessive nitrogen loading to waterways leads to increased eutrophication and associated water quality impacts. An understanding of the regional and interannual variability in nitrogen loading and associated drivers is necessary for the design of effective management strategies. Here we develop a parsimonious empirical model based on net anthropogenic nitrogen input, precipitation, and land use that explains 68% of the observed variability in annual total nitrogen flux (Q(TN)) (76% of ln(Q(TN))) across 242 catchment years. We use this model to present the first spatially and temporally resolved estimates of Q(TN) for all eight-digit hydrologic unit (HUC8) watersheds within the continental United States (CONUS), focusing on the period 1987-2007. Results reveal high spatial and temporal variability in loading, with spatial variability primarily driven by nitrogen inputs, but with interannual variability and the occurrence of extremes dominated by precipitation across over three-quarters of the CONUS. High interannual variability and its correlation with precipitation persist at large aggregated scales. These findings point to a fundamental challenge in managing regions with high nutrient loading, because these regions also exhibit the strongest interannual variability and because the impact of changes in management practices will be modulated by meteorological variability and climatic trends.
View Full Publication open_in_new
Abstract
Numerous existing satellites observe physical or environmental properties of the Earth system. Many of these satellites provide global-scale observations, but these observations are often sparse and noisy. By contrast, contiguous, global maps are often most useful to the scientific community (i.e., Level 3 products). We develop a spatio-temporal moving window block kriging method to create contiguous maps from sparse and/or noisy satellite observations. This approach exhibits several advantages over existing methods: (1) it allows for flexibility in setting the spatial resolution of the Level 3 map, (2) it is applicable to observations with variable density, (3) it produces a rigorous uncertainty estimate, (4) it exploits both spatial and temporal correlations in the data, and (5) it facilitates estimation in real time. Moreover, this approach only requires the assumption that the observable quantity exhibits spatial and temporal correlations that are inferable from the data. We test this method by creating Level 3 products from satellite observations of CO2 (XCO2 ) from the Greenhouse Gases Observing Satellite(GOSAT), CH4 (XCH4) from the Infrared Atmospheric Sounding Interferometer (IASI) and solar-induced chlorophyll fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). We evaluate and analyze the difference in performance of spatio-temporal vs. recently developed spatial kriging methods.
View Full Publication open_in_new
Abstract
Independent verification and quantification of fossil fuel (FF) emissions constitutes a considerable scientific challenge. By coupling atmospheric observations of CO2 with models of atmospheric transport, inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric and FF flux components of terrestrial fluxes from CO2 concentration measurements has proven to be difficult, due to observational and modeling limitations. In this study, we propose a statistical inverse modeling scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates, where these covariances and covariates are representative of the underlying processes affecting FF and biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data prototypical inversions by using in situ CO2 measurements over North America. Inversions are performed only for the month of January, as predominance of biospheric CO2 signal relative to FF CO2 signal and observational limitations preclude disaggregation of the fluxes in other months. The quality of disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower than 0.15 mu molm(-2)s(-1) between FF and biospheric fluxes. Error covariance models and covariates based on temporally varying FF inventory data provide a more robust disaggregation over static proxies (e.g., nightlight intensity and population density). However, the synthetic data case study shows that disaggregation is possible even in absence of detailed temporally varying FF inventory data.
View Full Publication open_in_new
Abstract
Observations show an increasing amplitude in the seasonal cycle of CO2 (ASC) north of 45 degrees N of 56 +/- 9.8% over the last 50 years and an increase in vegetation greenness of 7.5-15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO2 concentrations. We find that the modeled change in ASC is too small but the mean greening trend is generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.
View Full Publication open_in_new
Abstract
This review paper explores recent efforts to estimate state-and national-scale carbon dioxide (CO2) and methane (CH4) emissions from individual anthropogenic source sectors in the US. Nearly all state and national climate change regulations in the US target specific source sectors, and detailed monitoring of individual sectors presents a greater challenge than monitoring total emissions. We particularly focus on opportunities to synthesize disparate types of information on emissions, including emission inventory data and atmospheric greenhouse gas data.
View Full Publication open_in_new
Abstract
The ability to predict the trajectory of climate change requires a clear understanding of the emissions and uptake (i.e., surface fluxes) of long-lived greenhouse gases (GHGs). Furthermore, the development of climate policies is driving a need to constrain the budgets of anthropogenic GHG emissions. Inverse problems that couple atmospheric observations of GHG concentrations with an atmospheric chemistry and transport model have increasingly been used to gain insights into surface fluxes. Given the inherent technical challenges associated with their solution, it is imperative that objective approaches exist for the evaluation of such inverse problems. Because direct observation of fluxes at compatible spatiotemporal scales is rarely possible, diagnostics tools must rely on indirect measures. Here we review diagnostics that have been implemented in recent studies and discuss their use in informing adjustments to model setup. We group the diagnostics along a continuum starting with those that are most closely related to the scientific question being targeted, and ending with those most closely tied to the statistical and computational setup of the inversion. We thus begin with diagnostics based on assessments against independent information (e.g., unused atmospheric observations, large-scale scientific constraints), followed by statistical diagnostics of inversion results, diagnostics based on sensitivity tests, and analyses of robustness (e.g., tests focusing on the chemistry and transport model, the atmospheric observations, or the statistical and computational framework), and close with the use of synthetic data experiments (i.e., observing system simulation experiments, OSSEs). We find that existing diagnostics provide a crucial toolbox for evaluating and improving flux estimates but, not surprisingly, cannot overcome the fundamental challenges associated with limited atmospheric observations or the lack of direct flux measurements at compatible scales. As atmospheric inversions are increasingly expected to contribute to national reporting of GHG emissions, the need for developing and implementing robust and transparent evaluation approaches will only grow.
View Full Publication open_in_new
Abstract
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.
View Full Publication open_in_new
Abstract
Long-term records of phytoplankton blooms in freshwater lakes are necessary both for understanding basin scale changes to watersheds and for providing a key constraint for assessing processes driving blooms. However, due to the inherent constraints of in situ sampling and the short time period covered by modem space borne sensors, few long-term records exist. Historical data from sensors such as Landsat offer strong potential for creating new records of past blooms. Here, we use a novel evaluation procedure based on multiple metrics to assess algorithm suitability and robustness for generating long-term bloom records using Landsat 5 imagery. Evaluation metrics are based on bloom presence, spatial distribution, magnitude and timing, using both in situ Microcystis biovolume and remotely-sensed Cyanobacterial Index (CI) data from MERIS for 2002-2011. Applying this procedure for a test case focusing on Lake Erie's western basin, an algorithm based on a near infrared threshold with simple atmospheric correction through subtraction of the shortwave infrared band, combined with an additional "greenness" filter based on a hue threshold, performs best. Implementing this algorithm for 1984-2001 reveals the long-term trends in peak bloom magnitude prior to the start of the MERIS and MODIS record (2002-2015), and more than doubles the period of record that can be used to understand bloom occurrence and growth for this system. More broadly, we demonstrate that Landsat observations can be used to identify macro-scale features of blooms. For Lake Erie, the performance of the final Landsat algorithm is comparable to that of the MERIS CI algorithm, despite Landsat's broad spectral bands and long revisit time. (C) 2017 The Authors. Published by Elsevier Inc.
View Full Publication open_in_new
Abstract
Eutrophication, or excessive nutrient enrichment, threatens water resources across the globe. We show that climate change-induced precipitation changes alone will substantially increase (19 +/- 14%) riverine total nitrogen loading within the continental United States by the end of the century for the "business-as-usual" scenario. The impacts, driven by projected increases in both total and extreme precipitation, will be especially strong for the Northeast and the corn belt of the United States. Offsetting this increase would require a 33 +/- 24% reduction in nitrogen inputs, representing a massive management challenge. Globally, changes in precipitation are especially likely to also exacerbate eutrophication in India, China, and Southeast Asia. It is therefore imperative that water quality management strategies account for the impact of projected future changes in precipitation on nitrogen loading.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 768
  • Page 769
  • Page 770
  • Page 771
  • Current page 772
  • Page 773
  • Page 774
  • Page 775
  • Page 776
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025