Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Cells under a microscope courtesy of Ethan Greenblatt
    Public Program

    Carnegie Science SOCIAL: Fun & Games

    Carnegie Science Investigators

    September 30

    7:00pm EDT

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (similar to 200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan-Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit Ha emission (indicative of Be-star decretion disks), others have shallow broad H alpha absorption (consistent with rotation. greater than or similar to 150 km s(-1)), or deep Ha core absorption signaling lower rotation velocities (less than or similar to 150 km s(-1)). The spectra appear consistent with two populations of stars-one rapidly rotating, and the other, younger and slowly rotating.
View Full Publication open_in_new
Abstract
The GMT-Consortium Large Earth Finder (G-CLEF) is an instrument that is being designed to exceed the state-of-the-art radial velocity (RV) precision achievable with the current generation of stellar velocimeters. It is simultaneously being designed to enable a wide range of scientific programs, prominently by operating to blue wavelengths (> 3500 angstrom). G-CLEF will be the first light facility instrument on the Giant Magellan Telescope (GMT) when the GMT is commissioned in 2023. G-CLEF is a fiber-fed, vacuum-enclosed spectrograph with an asymmetric white pupil echelle design. We discuss several innovative structural, optical and control system features that differentiate G-CLEF from previous precision RV instruments.
View Full Publication open_in_new
Abstract
The GMT-Consortium Large Earth Finder (G-CLEF) will be part of the first generation instrumentation suite for the Giant Magellan Telescope (GMT). G-CLEF is a general purpose echelle spectrograph operating in the optical passband with precision radial velocity (PRV) capability. The measurement precision goal of G-CLEF is 10 cm/sec; necessary for the detection of Earth analogues. This goal imposes challenging stability requirements on the optical mounts and spectrograph support structures especially when considering the instrument's operational environment. G-CLEF's accuracy will be influenced by changes in temperature and ambient air pressure, vibration, and micro gravity-vector variations caused by normal telescope motions. For these reasons we have chosen to enclose G-CLEF's spectrograph in a well-insulated, vibration-isolated vacuum chamber in a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include; a limited space envelope, a thermal leakage ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology, and budget are also significant design drivers.
View Full Publication open_in_new
Abstract
The GMT-Consortium Large Earth Finder (G-CLEF) is one of the first instrument for the Giant Magellan Telescope (GMT). The G-CLEF is a fiber fed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. The G-CLEF Flexure Control Camera (FCC) is included as a part in the G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within the GCFEA. The five optical components constituting the FCC are aligned on a common optical bench. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimaging camera barrel, and a detector module. The collimator receives the beam reflected by the fiber mirror and consists of a triplet lens. The neutral density filters are located just after the collimator to make it possible a broad range star brightness as a target or a guide. The tent prism focus analyzer is positioned at a pupil produced by the collimator and is used to measure a focus offset. The reimaging camera barrel includes two pairs of doublet lenses to focus the beam onto the CCD focal plane. The detector module is composed of a linear translator and a field de-rotator. In this article, we present the optical and mechanical detailed designs of the G-CLEF FCC.
View Full Publication open_in_new
Abstract
The GMT-Consortium Large Earth Finder (G-CLEF), one of the first light instruments for the Giant Magellan Telescope (GMT), is a fiber-fed, high-resolution echelle spectrograph. G-CLEF is expected to proceed towards fabrication in the coming months. In this paper, we present the current, pre-construction G-CLEF optical design, with an emphasis on the innovative features derived for the spectrograph fiber-feed, the implementation of a volume-phase holographic (VPH)-based cross disperser with enhanced blue throughput and our novel solutions for a multi-colored exposure meter and a flat-fielding system.
View Full Publication open_in_new
Abstract
Barnard's star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs(1), it is the closest single star to the Sun; only the three stars in the alpha Centauri system are closer. Barnard's star is also among the least magnetically active red dwarfs known(2,3) and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imagine(4-6), astrometry(7,8 )and direct imaging(9), but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard's star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard's star, making it an excellent target for direct imaging and astrometric observations in the future.
View Full Publication open_in_new
Abstract
We report the first discovery of a multi-planetary system by the HATSouth network, HATS-59b,c, a planetary system with an inner transiting hot Jupiter and an outer cold massive giant planet, which was detected via radial velocity. The inner transiting planet, HATS-59b, is on an eccentric orbit with e = 0.129 +/- 0.049, orbiting a V = 13.951 +/- 0.030 mag solar-like star (M-star = 1.038 +/- 0.039 M-circle dot and R-star = 1.036 +/- 0.067 R-circle dot) with a period of 5.416081 +/- 0.000016 days. The outer companion, HATS-59c is on a circular orbit with m sin i = 12.70 +/- 0.87 M-J and a period of 1422 +/- 14 days. The inner planet has a mass of 0.806 +/- 0.069 M-J and a radius of 1.126 +/- 0.077 R-J, yielding a density of 0.70 +/- 0.16 g cm(-3). Unlike most planetary systems that include only a single hot Jupiter, HATS-59b, c includes, in addition to the transiting hot Jupiter, a massive outer companion. The architecture of this system is valuable for understanding planet migration.
View Full Publication open_in_new
Abstract
We describe the design and performance of the near-infrared (1.51-1.70 mu m), fiber-fed, multi-object (300 fibers), high resolution (R = lambda/Delta lambda similar to 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of similar to 10(5) red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy's chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 to 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument's successful development was enabled by several key innovations, including a "gang connector" to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as similar to 400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.
View Full Publication open_in_new
Abstract
The future of exoplanet science is bright, as Transiting Exoplanet Survey Satellite (TESS) once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36 day orbit around a bright (V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD 21749b to be 2.61(-0.16)(+0.17)R(circle plus), and combined archival and follow-up precision radial velocity data put the mass of the planet at 22.7(-1.9)(+2.2)M(circle plus). HD 21749b contributes to the TESS Level 1 Science Requirement of providing 50 transiting planets smaller than 4 R-circle plus with measured masses. Furthermore, we report the discovery of HD 21749c (TOI 186.02), the first Earth-sized (R-p = 0.8921(-0.058)(+0.064)R(circle plus)) planet from TESS. The HD 21749 system is a prime target for comparative studies of planetary composition and architecture in multi-planet systems.
View Full Publication open_in_new
Abstract
We report the detection of a transiting Earth-size planet around GJ 357, a nearby M2.5 V star, using data from the Transiting Exoplanet Survey Satellite (TESS). GJ 357 b (TOI-562.01) is a transiting, hot, Earth-sized planet (T-eq = 525 +/- 11 K) with a radius of R-b = 1.217 +/- 0.084 R-circle plus and an orbital period of P-b = 3.93 d. Precise stellar radial velocities from CARMENES and PFS, as well as archival data from HIRES, UVES, and HARPS also display a 3.93-day periodicity, confirming the planetary nature and leading to a planetary mass of M-b = 1.84 +/- 0.31 M-circle plus. In addition to the radial velocity signal for GJ 357 b, more periodicities are present in the data indicating the presence of two further planets in the system: GJ 357 c, with a minimum mass of M-c = 3.40 +/- 0.46 M-circle plus in a 9.12 d orbit, and GJ 357 d, with a minimum mass of M-d = 6.1 +/- 1.0 M-circle plus in a 55.7 d orbit inside the habitable zone. The host is relatively inactive and exhibits a photometric rotation period of P-rot = 78 +/- 2 d. GJ 357 b is to date the second closest transiting planet to the Sun, making it a prime target for further investigations such as transmission spectroscopy. Therefore, GJ 357 b represents one of the best terrestrial planets suitable for atmospheric characterization with the upcoming JWST and ground-based ELTs.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 760
  • Page 761
  • Page 762
  • Page 763
  • Current page 764
  • Page 765
  • Page 766
  • Page 767
  • Page 768
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025