Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Katelyn Horstman (Caltech)

    Searching for exo-satellites and brown dwarf binaries using the Keck Planet Imager and Characterizer (KPIC)

    January 30

    12:15pm PST

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We examine the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189), in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage, 2000-16000 angstrom, to better identify lensed systems and generate precise photometric redshifts. This photometric information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply lensed images and candidates, so that a total of 27 multiple images of nine systems are used to tightly constrain the inner mass profile gradient, d log Sigma/d log r similar or equal to -0.6 +/- 0.1 (r < 160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01 < z < 6.03, with the higher-redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap (similar to 0.7-1 arcmin). Combining weak and strong lensing, the overall mass profile is well fitted by a Navarro-Frenk-White profile with M-vir = (5.37(-0.63)(+0.70) +/- 0.26) x 10(14) M-circle dot h(-1) and a relatively high concentration, c(vir) = 8.77(-0.42)(+0.44) +/- 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of A383 is modest by the standards of other lensing clusters, r(E) similar or equal to 16 +/- 2 '' (for z(s) = 2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray-selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias.
View Full Publication open_in_new
Abstract
Detailed studies of the stellar populations of intermediate-redshift galaxies can shed light onto the processes responsible for the significant evolution of the massive galaxy population since z < 1. We have undertaken such a study by means of deep rest-frame optical spectroscopy with IMACS on Magellan on a sample of similar to 80 galaxies selected from CDFS to have stellar masses >10(10) M-circle dot and redshift 0.65 < z < 0.75. We analyse stellar absorption line strengths and interpret them with a Monte Carlo library of star formation histories to derive constraints on mean stellar ages, metallicities and stellar masses. We present here the first characterization of the stellar mass-metallicity and stellar mass-age relations at z similar to 0.7 and their evolution to the present-day.
View Full Publication open_in_new
Abstract
We utilize for the first time Hubble Space Telescope Advanced Camera for Surveys imaging to examine the structural properties of galaxies in the rest-frame U - V versus V - J diagram (i.e., the UVJ diagram) using a sample at 0.6 < z < 0.9 that reaches a low stellar mass limit (log M/M-circle dot > 10.25). The use of the UVJ diagram as a tool to distinguish quiescent galaxies from star-forming galaxies (SFGs) is becoming more common due to its ability to separate red quiescent galaxies from reddened SFGs. Quiescent galaxies occupy a small and distinct region of UVJ color space and we find most of them to have concentrated profiles with high Sersic indices (n > 2.5) and smooth structure characteristic of early-type systems. SFGs populate a broad but well-defined sequence of UVJ colors and are comprised of objects with a mix of Sersic indices. Interestingly, most UVJ-selected SFGs with high Sersic indices also display structure due to dust and star formation typical of the n < 2.5 SFGs and late-type systems. Finally, we find that the position of an SFG on the sequence of UVJ colors is determined to a large degree by the mass of the galaxy and its inclination. Systems that are closer to edge-on generally display redder colors and lower [OII]lambda 3727 luminosity per unit mass as a consequence of the reddening due to dust within the disks. We conclude that the two main features seen in UVJ color space correspond closely to the traditional morphological classes of early-and late-type galaxies.
View Full Publication open_in_new
Abstract
We report the discovery of a z(phot) = 6.18(-0.07)(+0.05) (95% confidence level) dwarf galaxy, lensed into four images by the galaxy cluster MACS J0329.6-0211 (z(l) = 0.45). The galaxy is observed as a high-redshift dropout in HST/ACS/WFC3 CLASH and Spitzer/IRAC imaging. Its redshift is securely determined due to a clear detection of the Lyman break in the 18-band photometry, making this galaxy one of the highest-redshift multiply lensed objects known to date with an observed magnitude of F125W = 24.00 +/- 0.04 AB mag for its most magnified image. We also present the first strong-lensing analysis of this cluster uncovering 15 additional multiply imaged candidates of five lower-redshift sources spanning the range z(s) similar or equal to 2-4. The mass model independently supports the high photometric redshift and reveals magnifications of 11.6(-4.1)(+8.9), 17.6(-3.9)(+6.2), 3.9(-1.7)(+3.0), and 3.7(-0.2)(+1.3), respectively, for the four images of the high-redshift galaxy. By delensing the most magnified image we construct an image of the source with a physical resolution of similar to 200 pc when the universe was similar to 0.9 Gyr old, where the z similar or equal to 6.2 galaxy occupies a source-plane area of approximately 2.2 kpc(2). Modeling the observed spectral energy distribution using population synthesis models, we find a demagnified stellar mass of similar to 10(9) M-circle dot, subsolar metallicity (Z/Z(circle dot) similar to 0.5), low dust content (A(V) similar to 0.1 mag), a demagnified star formation rate (SFR) of similar to 3.2 M-circle dot yr(-1), and a specific SFR of similar to 3.4 Gyr (1), all consistent with the properties of local dwarf galaxies.
View Full Publication open_in_new
Abstract
We present a strong-lensing analysis of the galaxy cluster MACS J1206.2-0847 (z = 0.44) using UV, Optical, and IR, HST/ACS/WFC3 data taken as part of the CLASH multi-cycle treasury program, with VLT/VIMOS spectroscopy for some of the multiply lensed arcs. The CLASH observations, combined with our mass model, allow us to identify 47 new multiply lensed images of 12 distant sources. These images, along with the previously known arc, span the redshift range 1 less than or similar to z less than or similar to 5.5, and thus enable us to derive a detailed mass distribution and to accurately constrain, for the first time, the inner mass profile of this cluster. We find an inner profile slope of d log Sigma/d log theta similar or equal to -0.55 +/- 0.1 (in the range [1 '', 53 ''], or 5 kpc less than or similar to r less than or similar to 300 kpc), as commonly found for relaxed and well-concentrated clusters. Using the many systems uncovered here we derive credible critical curves and Einstein radii for different source redshifts. For a source at z(s) similar or equal to 2.5, the critical curve encloses a large area with an effective Einstein radius of theta(E) = 28 '' +/- 3 '', and a projected mass of (1.34 +/- 0.15) x 10(14) M-circle dot. From the current understanding of structure formation in concordance cosmology, these values are relatively high for clusters at z similar to 0.5, so that detailed studies of the inner mass distribution of clusters such as MACS J1206.2-0847 can provide stringent tests of the Lambda CDM paradigm.
View Full Publication open_in_new
Abstract
The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (theta(Ein) > 35 '' at z(s) = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (sigma(z) similar to 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6 + 2223 (z = 0.544).
View Full Publication open_in_new
Abstract
By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the density profile implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help us understand why the standard thin disk model is likely to be inaccurate above similar to 0.3 Eddington luminosity, which was found by some works on black hole spin measurement. Furthermore, the solutions satisfy the Solberg-Hoiland conditions, which indicate the disk to be convectively stable. In addition, we discuss the possible link between our disk model and ultraluminous X-ray sources.
View Full Publication open_in_new
Abstract
We derive an accurate mass distribution of the galaxy cluster MACS J1206.2-0847 (z = 0.439) from a combined weak-lensing distortion, magnification, and strong-lensing analysis of wide-field Subaru BVR(c)I(c)z' imaging and our recent 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble program. We find good agreement in the regions of overlap between several weak-and strong-lensing mass reconstructions using a wide variety of modeling methods, ensuring consistency. The Subaru data reveal the presence of a surrounding large-scale structure with the major axis running approximately northwest-southeast (NW-SE), aligned with the cluster and its brightest galaxy shapes, showing elongation with a similar to 2:1 axis ratio in the plane of the sky. Our full-lensing mass profile exhibits a shallow profile slope d ln Sigma/d ln R similar to -1 at cluster outskirts (R greater than or similar to 1 Mpc h(-1)), whereas the mass distribution excluding the NW-SE excess regions steepens farther out, well described by the Navarro-Frenk-White form. Assuming a spherical halo, we obtain a virial mass M-vir = (1.1 +/- 0.2 +/- 0.1) x 10(15) M-circle dot h(-1) and a halo concentration c(vir) = 6.9 +/- 1.0 +/- 1.2 (c(vir) similar to 5.7 when the central 50 kpc h(-1) is excluded), which falls in the range 4 less than or similar to < c > less than or similar to 7 of average c(M, z) predictions for relaxed clusters from recent. cold dark matter simulations. Our full-lensing results are found to be in agreement with X-ray mass measurements where the data overlap, and when combined with Chandra gas mass measurements, they yield a cumulative gas mass fraction of 13.7(-3.0)(+4.5)% at 0.7 Mpc h(-1) (approximate to 1.7 r(2500)), a typical value observed for high-mass clusters.
View Full Publication open_in_new
Abstract
We precisely constrain the inner mass profile of A2261 (z = 0.225) for the first time and determine that this cluster is not "overconcentrated" as found previously, implying a formation time in agreement with Lambda CDM expectations. These results are based on multiple strong-lensing analyses of new 16-band Hubble Space Telescope imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble. Combining this with revised weak-lensing analyses of Subaru wide-field imaging with five-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M-vir = (2.2 +/- 0.2) x 10(15) M-circle dot h(70)(-1) (within r(vir) approximate to 3 Mpc h(70)(-1)) and concentration c(vir) = 6.2 +/- 0.3 when assuming a spherical halo. This agrees broadly with average c(M, z) predictions from recent Lambda CDM simulations, which span 5 less than or similar to < c > less than or similar to 8. Our most significant systematic uncertainty is halo elongation along the line of sight (LOS). To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be similar to 35% lower than our lensing-derived profile at r(2500) similar to 600 kpc. Agreement can be achieved by a halo elongated with a similar to 2:1 axis ratio along our LOS. For this elongated halo model, we find M-vir = (1.7 +/- 0.2) x 10(15) M-circle dot h(70)(-1) and c(vir) = 4.6 +/- 0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find that these tend to lower M-vir further by similar to 7% and increase c(vir) by similar to 5%.
View Full Publication open_in_new
Abstract
Hubble Space Telescope images of the galaxy cluster A2261, obtained as part of the Cluster Lensing And Supernova survey with Hubble, show that the brightest galaxy in the cluster, A2261-BCG, has the largest core yet detected in any galaxy. The cusp radius of A2261-BCG is 3.2 kpc, twice as big as the next largest core known, and similar to 3x bigger than those typically seen in the most luminous brightest cluster galaxies. The morphology of the core in A2261-BCG is also unusual, having a completely flat interior surface brightness profile, rather than the typical shallow cusp rising into the center. This implies that the galaxy has a core with constant or even centrally decreasing stellar density. Interpretation of the core as an end product of the "scouring" action of a binary supermassive black hole implies a total black hole mass similar to 10(10) M-circle dot from the extrapolation of most relationships between core structure and black hole mass. The core falls 1 sigma above the cusp radius versus galaxy luminosity relation. Its large size in real terms, and the extremely large black hole mass required to generate it, raises the possibility that the core has been enlarged by additional processes, such as the ejection of the black holes that originally generated the core. The flat central stellar density profile is consistent with this hypothesis. The core is also displaced by 0.7 kpc from the center of the surrounding envelope, consistent with a local dynamical perturbation of the core.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 484
  • Page 485
  • Page 486
  • Page 487
  • Current page 488
  • Page 489
  • Page 490
  • Page 491
  • Page 492
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026