Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Rising lake temperatures and changing nutrient inputs are believed to favour the spread of a toxic invasive cyanobacterium, Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju, in temperate lakes. However, most evidence for these hypotheses is observational or based on physiological measurements in monocultures. We lack clear experimental evidence relating temperature and nutrients to the competitive success of C. raciborskii. To address this, we performed a 2 x 2 factorial laboratory experiment to study the dynamics of mixed phytoplankton communities subjected to different levels of temperature and phosphorus over 51 days. We allowed C. raciborskii to compete with ten different species from major taxonomic groups (diatoms, green algae, cryptophytes, and cyanobacteria) typical of temperate lakes, under low and high summer temperatures (25 and 30 A degrees C) at two levels of phosphorus supply (1 and 25 A mu mol L-1). Cylindrospermopsis raciborskii dominated the communities and strongly decreased diversity under low-phosphorus conditions, consistent with the hypothesis that it is a good phosphorus competitor. In contrast, it remained extremely rare in high-phosphorus conditions, where fast-growing green algae dominated. Surprisingly, temperature played a negligible role in influencing community composition, suggesting that changes in summer temperature may not be important in determining C. raciborskii's spread.
View Full Publication open_in_new
Abstract
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity. StoichFun_SEM_RichnessStoichFun_SEM_EvennessReadme_StoichFun Copyright: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication
View Full Publication open_in_new
Abstract
Biological diversity depends on the interplay between evolutionary diversification and ecological mechanisms allowing species to coexist. Current research increasingly integrates ecology and evolution over a range of timescales, but our common conceptual framework for understanding species coexistence requires better incorporation of evolutionary processes. Here, we focus on the idea of evolutionarily stable communities (ESCs), which are theoretical endpoints of evolution in a community context. We use ESCs as a unifying framework to highlight some important but under-appreciated theoretical results, and we review empirical research relevant to these theoretical predictions. We explain how, in addition to generating diversity, evolution can also limit diversity by reducing the effectiveness of coexistence mechanisms. The coevolving traits of competing species may either diverge or converge, depending on whether the number of species in the community is low (undersaturated) or high (oversaturated) relative to the ESC. Competition in oversaturated communities can lead to extinction or neutrally coexisting, ecologically equivalent species. It is critical to consider trait evolution when investigating fundamental ecological questions like the strength of different coexistence mechanisms, the feasibility of ecologically equivalent species, and the interpretation of different patterns of trait dispersion.
View Full Publication open_in_new
Abstract
The human gut microbiome develops over early childhood and aids in food digestion and immunomodulation, but the mechanisms driving its development remain elusive. Here we use data curated from literature and online repositories to examine trait-based patterns of gut microbiome succession in 56 infants over their first three years of life. We also develop a new phylogeny-based approach of inferring trait values that can extend readily to other microbial systems and questions. Trait-based patterns suggest that infant gut succession begins with a functionally variable cohort of taxa, adept at proliferating rapidly within hosts, which gradually matures into a more functionally uniform cohort of taxa adapted to thrive in the anoxic gut and disperse between anoxic patches as oxygen-tolerant spores. Trait-based composition stabilizes after the first year, while taxonomic turnover continues unabated, suggesting functional redundancy in the traits examined. Trait-based approaches powerfully complement taxonomy-based approaches to understanding the mechanisms of microbial community assembly and succession.
View Full Publication open_in_new
Abstract
Mass cultivation of algae for biofuel and other bioproduct production in outdoor, open raceway ponds has some considerable economic advantages. However, these systems would be subject to fluctuations in temperature (among other environmental factors), which can have dramatic effects on the growth rates of algal species and impact the overall productivity and quality of targeted algal crops. This study sought to elucidate the effects of temperature on algal growth rates, biomass accumulation, fatty acid production and composition. We surveyed 26 algal species from 5 different functional groups, growing them at 6 different temperatures between 9 and 32 degrees C. For each surveyed species, we collected eco-physiological trait data including maximum growth rate, thermal optimum (T-opt), thermal niche width, and lower and upper temperature limits for growth (CTmin and CTmax respectively); these data were also pooled for analysis at the functional group level. Responses to temperature varied among species, but at the functional group level we determined that the cyanobacteria have the highest thermal optimum (30.6 +/- 2.3 degrees C), followed by chlorophytes (25.7 +/- 0.1 degrees C) and diatoms (24.0 +/- 0.4 degrees C). Temperature-specific fatty acid (FA) production was mostly controlled by growth rates, though some change in production was attributable to modification of intracellular FA stores. Temperature affected FA profiles in diverse ways, with no consistent trends across species or functional groups. In sum, temperature significantly impacts the overall productivity of algal biofuel systems by influencing species growth rates and fatty acid production. While algal growth rates varied predictably with temperature, we did not find the generalizable trends in temperature dependence of FA composition, suggesting that some aspects of algal cultivation for bioproducts in outdoor, open-air systems may be less predictable. However, a compilation of algal growth and FA composition responses to temperature, such as ours, may be useful for choosing appropriate species for given temperature regimes.
View Full Publication open_in_new
Abstract
Temperature effects on the fatty acid (FA) profiles of phytoplankton, major primary producers in the ocean, have been widely studied due to their importance as industrial feedstocks and to their indispensable role as global producers of long-chain, polyunsaturated FA (PUFA), including omega-3 (omega3) FA required by organisms at higher trophic levels. The latter is of global ecological concern for marine food webs, as some evidence suggests an ongoing decline in global marine-derived omega3 FA due to both a global decline in phytoplankton abundance and to a physiological reduction in omega3 production by phytoplankton as temperatures rise. Here, we examined both short-term (physiological) and long-term (evolutionary) responses of FA profiles to temperature by comparing FA thermal reaction norms of the marine diatom Thalassiosira pseudonana after ~500 generations (ca. 2.5 years) of experimental evolution at low (16°C) and high (31°C) temperatures. We showed that thermal reaction norms for some key FA classes evolved rapidly in response to temperature selection, often in ways contrary to our predictions based on prior research. Notably, 31°C-selected populations showed higher PUFA percentages (including omega3 FA) than 16°C-selected populations at the highest assay temperature (31°C, above T. pseudonanas optimum temperature for population growth), suggesting that high-temperature selection led to an evolved ability to sustain high PUFA production at high temperatures. Rapid evolution may therefore mitigate some of the decline in global phytoplankton-derived omega3 FA production predicted by recent studies. Beyond its implications for marine food webs, knowledge of the effects of temperature on fatty acid profiles is of fundamental importance to our understanding of the mechanistic causes and consequences of thermal adaptation. 1-FattyAcids_total.measured_molar_05182-FattyAcids_mol.biovolume_raw_05183-FattyAcids_percentages_raw_11184-FattyAcids_MCL_WUnSat_raw_0518 Copyright: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 469
  • Page 470
  • Page 471
  • Page 472
  • Current page 473
  • Page 474
  • Page 475
  • Page 476
  • Page 477
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025