Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Far-infrared astronomy has advanced rapidly since its inception in the late 1950s, driven by a maturing technology base and an expanding community of researchers. This advancement has shown that observations at far-infrared wavelengths are important in nearly all areas of astrophysics, from the search for habitable planets and the origin of life to the earliest stages of galaxy assembly in the first few hundred million years of cosmic history. The combination of a still-developing portfolio of technologies, particularly in the field of detectors, and a widening ensemble of platforms within which these technologies can be deployed, means that far-infrared astronomy holds the potential for paradigm-shifting advances over the next decade. We examine the current and future far-infrared observing platforms, including ground-based, suborbital, and space-based facilities, and discuss the technology development pathways that will enable and enhance these platforms to best address the challenges facing far-infrared astronomy in the 21st century. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
View Full Publication open_in_new
Abstract
The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 mu m), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight-spare low-density (approximately 0.01 g cm(-3)) silica aerogel. The impact velocities (3-21 km s(-1)) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km s(-1). The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 mu m and below hard to identify at low capture speeds (<10 km s(-1)). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found.
View Full Publication open_in_new
Abstract
Black hole mass measurements outside the local Universe are critically important to derive the growth of supermassive black holes over cosmic time, and to study the interplay between black hole growth and galaxy evolution. In this paper, we present two measurements of supermassive black hole masses from reverberation mapping (RM) of the broad C IV emission line. These measurements are based on multiyear photometry and spectroscopy from the Dark Energy Survey Supernova Program (DES-SN) and the Australian Dark Energy Survey (OzDES), which together constitute the OzDES RM Program. The observed reverberation lag between the DES continuum photometry and the OzDES emission line fluxes is measured to be 358(-123)(+126) and 343(-84)(+58) d for two quasars at redshifts of 1,905 and 2.593, respectively. The corresponding masses of the two supermassive black holes are 4.4 x 10(9) and 3.3 x 10(9) M-circle dot, which are among the highest redshift and highest mass black holes measured to date with RM studies. We use these new measurements to better determine the C IV radius luminosity relationship for high-luminosity quasars, which is fundamental to many quasar black hole mass estimates and demographic studies,
View Full Publication open_in_new
Abstract
We present new Karl G. Jansky Very Large Array (VLA, 1.5 GHz) radio data for the giant elliptical galaxy IC 4296, supported by archival radio, X-ray (Chandra, and XMM-Newton) and optical (SOAR, and HST) observations. The galaxy hosts powerful radio jets piercing through the inner hot X-ray emitting atmosphere, depositing most of the energy into the ambient intracluster medium (ICM). Whereas the radio surface brightness of the A configuration image is consistent with a Fanaroff-Riley Class I system, the D configuration image shows two bright, relative to the central region, large (similar to 160 kpc diameter), well-defined lobes, previously reported by Killeen et al., at a projected distance r greater than or similar to 230 kpc. The XMM-Newton image reveals an X-ray cavity associated with one of the radio lobes. The total enthalpy of the radio lobes is similar to 7 x 10(59) erg and the mechanical power output of the jets is similar to 10(44) erg s(-1). The jets are mildly curved and possibly rebrightened by the relative motion of the galaxy and the ICM. The lobes display sharp edges, suggesting the presence of bow shocks, which would indicate that they are expanding supersonically. The central entropy and cooling time of the X-ray gas are unusually low and the nucleus hosts a warm H alpha + [N II] nebula and a cold molecular CO disc. Because most of the energy of the jets is deposited far from the nucleus, the atmosphere of the galaxy continues to cool, apparently feeding the central supermassive black hole and powering the jet activity.
View Full Publication open_in_new
Abstract
We present a description of the Australian Dark Energy Survey (OzDES) and summarize the results from its 6 years of operations. Using the 2dF fibre positioner and AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope, OzDES has monitored 771 active galactic nuclei, classified hundreds of supernovae, and obtained redshifts for thousands of galaxies that hosted a transient within the 10 deep fields of the Dark Energy Survey. We also present the second OzDES data release, containing the redshifts of almost 30 000 sources, some as faint as r(AB) = 24 mag, and 375 000 individual spectra. These data, in combination with the time-series photometry from the Dark Energy Survey, will be used to measure the expansion history of the Universe out to z similar to 1.2 and the masses of hundreds of black holes out to z similar to 4. OzDES is a template for future surveys that combine simultaneous monitoring of targets with wide-field imaging cameras and wide-field multi-object spectrographs.
View Full Publication open_in_new
Abstract
Recent radio surveys have revealed pulsars with dispersion and scattering delays induced by ionized gas that are larger than the rest of the observed pulsar population, in some cases with electron column densities (or dispersion measures; DMs) larger than the maximum predictions of Galactic electron density models. By cross-matching the observed pulsar population against H II region catalogs, we show that the majority of pulsars with DM > 600 pc cm−3 and scattering delays τ (1 GHz) > 10 ms lie behind H II regions, and that H II region intersections may be relevant to as much as a third of the observed pulsar population. The fraction of the full pulsar population with sightlines intersecting H II regions is likely larger. Accounting for H II regions resolves apparent discrepancies where Galactic electron density models place high-DM pulsars beyond the Galactic disk. By comparing emission measures (EMs) inferred from recombination line observations to pulsar DMs, we show that H II regions can contribute tens to hundreds of pc cm−3 − 3 in electron column density along a pulsar LOS. We find that nearly all pulsars with significant excess (and deficit) scattering from the mean τ-DM relation are spatially coincident with known discrete ionized gas structures, including H II regions. Accounting for H II regions is critical to the interpretation of radio dispersion and scattering measurements as electron density tracers, both in the Milky Way and in other galaxies.
View Full Publication open_in_new
Abstract
This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.
View Full Publication open_in_new
Abstract
Aims. We conducted a high-precision differential abundance analysis of the remarkable binary system HD 240429/30 (Krios and Kronos, respectively), whose difference in metallicity is one of the highest detected to date in systems with similar components (∼ 0.20 dex). A condensation temperature TC trend study was performed to search for possible chemical signatures of planet formation. In addition, other potential scenarios are proposed to explain this disparity. Methods. Fundamental atmospheric parameters (Teff , log g, [Fe/H], vturb) were calculated using the latest version of the FUNDPAR code in conjunction with ATLAS12 model atmospheres and the MOOG code, considering the Sun and then Kronos as references, employing high-resolution MAROON-X spectra. We applied a full line-by-line differential technique to measure the abundances of 26 elements in both stars with equivalent widths and spectral synthesis taking advantage of the non-solar-scaled opacities to achieve the highest precision. Results. We find a difference in metallicity of ∼ 0.230 dex: Kronos is more metal rich than Krios. This result denotes a challenge for the chemical tagging method. The analysis encompassed the examination of the diffusion effect and primordial chemical differences, concluding that the observed chemical discrepancies in the binary system cannot be solely attributed to any of these processes. The results also show a noticeable excess of Li of approximately 0.56 dex in Kronos, and an enhancement of refractories with respect to Krios. A photometric study with TESS data was carried out, without finding any signal of possible transiting planets around the stars. Several potential planet formation scenarios were also explored to account for the observed excess in both metallicity and lithium in Kronos; none was definitively excluded. While planetary engulfment is a plausible explanation, considering the ingestion of an exceptionally high mass, approximately ∼ 27.8M⊕, no scenario is definitively ruled out. We emphasize the need for further investigations and refinements in modelling; indispensable for a comprehensive understanding of the intricate dynamics within the Krios & Kronos binary system.
View Full Publication open_in_new
Abstract
For more than a decade, the CheMin X-ray diffraction instrument on the Mars Science Laboratory rover, Curiosity, has been returning definitive and quantitative mineralogical and mineral-chemistry data from similar to 3.5-billion-year-old (Ga) sediments in Gale crater, Mars. To date, 40 drilled rock samples and three scooped soil samples have been analyzed during the rover's 30+ km transit. These samples document the mineralogy of over 800 m of flat-lying fluvial, lacustrine, and aeolian sedimentary rocks that comprise the lower strata of the central mound of Gale crater (Aeolis Mons, informally known as Mt. Sharp) and the surrounding plains (Aeolis Palus, informally known as the Bradbury Rise). The principal mineralogy of the sedimentary rocks is of basaltic composition, with evidence of post-depositional diagenetic overprinting. The rocks in many cases preserve much of their primary mineralogy and sedimentary features, suggesting that they were never strongly heated or deformed. Using aeolian soil composition as a proxy for the composition of the deposited and lithified sediment, it appears that, in many cases, the diagenetic changes observed are principally isochemical. Exceptions to this trend include secondary nodules, calcium sulfate veining, and rare Si-rich alteration halos. A surprising and yet poorly understood observation is that nearly all of the similar to 3.5 Ga sedimentary rocks analyzed to date contain 15-70 wt.% of X-ray amorphous material. Overall, this >800 m section of sedimentary rock explored in lower Mt. Sharp documents a perennial shallow lake environment grading upward into alternating lacustrine/fluvial and aeolian environments, many of which would have been habitable to microbial life.
View Full Publication open_in_new
Abstract
We gave young scientists this prompt: Describe one change to scientific policy or culture that would substantially decrease incidents of scientific misconduct or other unethical behavior.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025