Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Katelyn Horstman (Caltech)

    Searching for exo-satellites and brown dwarf binaries using the Keck Planet Imager and Characterizer (KPIC)

    January 30

    12:15pm PST

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    This image is an artist’s concept of a supermassive black hole, which is part of a quasar from just 690 million years after the Big Bang. The quasar (orange disk) is surrounded by neutral hydrogen, indicating that it is from the period called the epoch of reionization, when the universe’s first light sources turned on. The object was detected by Carnegie’s Magellan telescope at the Las Campanas Observatory, shown in the bottom left corner. Courtesy Robin Dienel/Carnegie Science
    Breaking News
    January 22, 2026

    From “Star Stuff” to Planets - New Frontiers in Astronomy

    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Carnegie Science Senior Development Officer James Morse

James Morse

Senior Development Officer

Karsten Halusa, Carnegie Science Associate Director of Advancement Services

Karsten Halusa

Associate Director of Advancement Services

Carnegie Science Development Director Kristen Palumbo

Kristen Palumbo

Development Director

Carnegie Science Chief Development Officer Jeanine Forsythe

Jeanine Forsythe

Chief Development Officer

Tamar Lolua, Executive Assistant to the President at Carnegie Science

Tamar Lolua

Executive Assistant to the President

Lisa Harter

Lisa Harter

Development Officer

Abstract
Core-collapse supernovae (CCSNe) are considered the primary magnetar formation channel, with 15 magnetars associated with supernova remnants (SNRs). A large fraction of these should occur in massive stellar binaries that are disrupted by the explosion, meaning that similar to 45 per cent of magnetars should be nearby high-velocity stars. Here, we conduct a multiwavelength search for unbound stars, magnetar binaries, and SNR shells using public optical (uvgrizy bands), infrared (J, H, K, and K-s bands), and radio (888 MHz, 1.4 GHz, and 3 GHz) catalogues. We use Monte Carlo analyses of candidates to estimate the probability of association with a given magnetar based on their proximity, distance, proper motion, and magnitude. In addition to recovering a proposed magnetar binary, a proposed unbound binary, and 13 of 15 magnetar SNRs, we identify two new candidate unbound systems: an OB star from the Gaia catalogue we associate with SGR J1822.3-1606, and an X-ray pulsar we associate with 3XMM J185246.6 + 003317. Using a Markov Chain Monte Carlo simulation that assumes all magnetars descend from CCSNe, we constrain the fraction of magnetars with unbound companions to 5 less than or similar to f(u) less than or similar to 24 per cent, which disagrees with neutron star population synthesis results. Alternate formation channels are unlikely to wholly account for the lack of unbound binaries as this would require 31 less than or similar to f(nc) less than or similar to 66 per cent of magnetars to descend from such channels. Our results support a high fraction (48 less than or similar to f(m) less than or similar to 86 per cent) of pre-CCSN mergers, which can amplify fossil magnetic fields to preferentially form magnetars.
View Full Publication open_in_new
Abstract
Observing exoplanets through transmission spectroscopy supplies detailed information about their atmospheric composition, physics and chemistry. Before the James Webb Space Telescope (JWST), these observations were limited to a narrow wavelength range across the near-ultraviolet to near-infrared, alongside broadband photometry at longer wavelengths. To understand more complex properties of exoplanet atmospheres, improved wavelength coverage and resolution are necessary to robustly quantify the influence of a broader range of absorbing molecular species. Here we present a combined analysis of JWST transmission spectroscopy across four different instrumental modes spanning 0.5-5.2 mu m using Early Release Science observations of the Saturn-mass exoplanet WASP-39 b. Our uniform analysis constrains the orbital and stellar parameters within subpercentage precision, including matching the precision obtained by the most precise asteroseismology measurements of stellar density to date, and it further confirms the presence of Na, K, H2O, CO, CO2 and SO2 as atmospheric absorbers. Through this process, we have improved the agreement between the transmission spectra of all modes, except for the NIRSpec PRISM, which is affected by partial saturation of the detector. This work provides strong evidence that uniform light curve analysis is an important aspect to ensuring reliability when comparing the high-precision transmission spectra provided by JWST.
View Full Publication open_in_new
Abstract
Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response. PDC is identified as an EIN2-C nuclear partner, and ethylene triggers its nuclear accumulation. Mutations in PDC lead to an ethylene hyposensitivity that results from the reduction of histone acetylation and transcription activation. Enzymatically active nuclear PDC synthesizes nuclear acetyl CoA for EIN2-C-directed histone acetylation and transcription regulation. These findings uncover a mechanism by which PDC-EIN2 converges the mitochondrial enzyme-mediated nuclear acetyl CoA synthesis with epigenetic and transcriptional regulation for plant hormone response.
View Full Publication open_in_new
Abstract
We report a comprehensive study of the ungrouped type 2 carbonaceous chondrite, Tarda, which fell in Morocco in 2020. This meteorite exhibits substantial similarities to Tagish Lake, Wisconsin Range 91600, and Meteorite Hills 00432, which are generally considered to have originated from a D-type asteroid(s). We constrain the compositions and petrologies of the materials present in a potential sample of a D-type asteroid by reporting the petrography, bulk chemical compositions, bulk H, C, N, Cr, and Ti isotopic compositions, reflectance spectra, and in situ chemical compositions of metals, sulfides, carbonates, and FeO-poor and FeO-rich chondrule silicates of Tarda. We also present new data for Tagish Lake. We then compare Tarda with the other Tagish Lake-like meteorites. Tarda and Tagish Lake appear to be from the same parent body, as demonstrated by their similar petrologies (modal abundances, chondrule sizes), mineral compositions, bulk chemical and isotopic compositions, and reflectance spectra. While the two other Tagish Lake-like meteorites, Wisconsin Range 91600 and Meteorite Hills 00432, show some affinities to Tagish Lake and Tarda, they also share similar characteristics to the Mighei-like carbonaceous (CM) chondrites, warranting further study. Similarities in reflectance spectra suggest that P-type asteroids 65 Cybele and 76 Freia are potential parent bodies of Tarda and the Tagish Lake-like meteorites, or at least have similar surface materials. Since upcoming spacecraft missions will spectrally survey D-type, P-type, and C-type Trojan asteroids (NASA's Lucy) and spectrally study and return samples from Mars' moon Phobos (JAXA's Martian Moons eXploration mission), which is spectrally similar to D-type asteroids, these meteorites are of substantial scientific interest. Furthermore, since Tarda closely spectrally matches P-type asteroids (but compositionally matches the D-type asteroid like Tagish Lake meteorite), P-type and D-type asteroids may represent fragments of the same or similar parent bodies.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026