Negative thermal expansion in solid deuteromethane

Freiman, Yu A.; Vengerovsky, V. V.; Goncharov, A. F.
2020
LOW TEMPERATURE PHYSICS
DOI
10.1063/10.0002158
The thermal expansion at constant pressure of solid CD4 III is calculated for the low-temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region there is a giant peak of the negative thermal expansion. The height of this peak is comparable or even exceeds the thermal expansion of solid N-2, CO, O-2, or CH4 in their triple points. It is shown that like in the case of light methane, the effect of pressure is quite unusual: as evidenced from the pressure dependence of the thermodynamic Gruneisen parameter (which is negative and large in the absolute value), solid CD4 becomes increasingly quantum with rising pressure.