Hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid: An experimental study in situ at high pressure and temperature
2013
AMERICAN MINERALOGIST
DOI
10.2138/am.2013.4247
Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally by using vibrational spectroscopy as the analytical tool. The measurements were conducted in situ with samples at the high temperature and pressure of interest in an externally heated diamond cell in the 450-800 degrees C and 101-1567 MPa temperature and pressure range, respectively. The starting materials were glass of Na-silicate with Na/Si = 0.5 (NS4), an aluminosilicate composition with 10 mol% Al2O3 and Na/(Al+Si) = 0.5 (NA10), and a 50:50 (by volume) H2O:D2O fluid mixture. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure.