The compression behavior of blodite at low and high temperature up to similar to 10 GPa: Implications for the stability of hydrous sulfates on icy planetary bodies
2017
ICARUS
DOI
10.1016/j.icarus.2016.11.032
Recent satellite inferences of hydrous sulfates as recurrent minerals on the surface of icy planetary bodies link with the potential mineral composition of their interior. Blodite, a mixed Mg-Na sulfate, is here taken as representative mineral of icy satellites surface to investigate its crystal structure and stability at conditions of the interior of icy bodies. To this aim we performed in situ synchrotron angle-dispersive X-ray powder diffraction experiments on natural blodite at pressures up to similar to 10.4 GPa and temperatures from similar to 118.8 K to similar to 490.0 K using diamond anvil cell technique to investigate the compression behavior and establish a low-to-high temperature equation of state that can be used as reference when modeling the interior of sulfate-rich icy satellites such as Ganymede.