Josh Simon uses observations of nearby galaxies to study problems related to dark matter, chemical evolution, star formation, and the process of galaxy evolution.

In one area he looks at peculiarly dark galaxies. Interestingly, some galaxies are so dark they glow with the light of just a few hundred Suns. Simon and colleagues have determined that a tiny, very dim galaxy orbiting the Milky Way, called Segue 1, is the darkest galaxy ever found and has the highest dark matter density ever found. His team has also laid to rest a debate about whether Segue 1 really is a galaxy or a globular cluster—a smaller group of stars that lacks dark matter. Their findings make Segue 1 a promising laboratory to study dark matter, particularly the possibility that dark matter could be seen for the first time via a detection of gamma rays emanating from colliding dark matter particles.

Dark matter is the mysterious nonluminous material that makes up about most of the universe.  Dark energy is a mysterious repulsive force. Together they make up  about 95% of the universe. The rest--all observable matter--adds up to less than 5% of the universe.  Nearby dwarf galaxies have the highest measured densities of dark matter, making them ideal for dark matter studies, but that proximity also has a downside. Star systems so close to the massive Milky Way are subject to the acceleration of their stars by our galaxy’s tidal forces, an effect that can mimic the presence of dark matter. The lack of bright stars in dim dwarfs also makes it difficult to measure the velocities of enough stars for sufficient certainty. Simon and company overcame these hurdles with a comprehensive program that measured and analyzed the speed and chemistry of 397 stars in the vicinity of Segue 1.

 A major difference between galaxies and globular clusters--spherical collections of stars that are gravitationally bound--is that the stars in galaxies contain widely varying amounts of iron and other heavy elements, while stars in clusters do not. The new observations revealed that some Segue 1 stars have 50 times less iron than others in the galaxy, demonstrating conclusively that Segue 1 cannot be a globular cluster.

In collaboration with astronomers, Simon also showed that the high speeds of the Segue 1 stars are not caused by invisible binary companion stars, firming up the estimates of the amount of dark matter in the galaxy. Ongoing observations with NASA’s Fermi Gamma-ray Space Telescope are searching for signals from Segue 1 and other dwarfs, which would provide astronomers with concrete proof that their dark matter theories are on the right track\

Simon received his B.S. in physics from Stanford University and his M.A. and Ph. D. in astrophysics from UC-Berkeley. He was a postdoctoral scholar at Caltech from 2005-2008 and  the Vera Rubin Fellow at Carnegie from  2008 to 2010. For more information see http://obs.carnegiescience.edu/users/jsimon

Scientific Area: 

Explore Carnegie Science

September 1, 2021

Pasadena, CA—Astronomer Ana Bonaca, for whom the Milky Way galaxy is laboratory to explore the evolution of the universe, has joined the Carnegie Observatories as a Staff Scientist.

Bonaca arrived this month from Harvard University where she held a prestigious Institute for Theory and Computation Fellowship. Prior to that she completed her Ph.D. in astronomy from Yale University and a master’s degree in physics from the University of Zagreb.

Bonaca studies how the uneven pull of our galaxy’s gravity affects objects called globular clusters—spheres made up of a million stars bound together and orbiting a galactic core. The Milky Way is enveloped by a

June 29, 2021

Washington, DC—A team of Carnegie astronomers was awarded $1.4 million from the Heising-Simons Foundation to develop an ambitious and versatile infrared spectrograph for the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile that will enable breakthroughs in understanding cosmology, galaxy evolution, and exoplanet atmospheres.

Spearheaded by instrument lead Nicholas Konidaris and project scientists Andrew Newman and Gwen Rudie of the Carnegie Observatories, the project, called the Magellan Infrared Multiobject Spectrograph, or MIRMOS, will expand researchers’ view of the sky in the infrared wavelengths of the spectrum and significantly advance

NG4321 galaxy. Credit: ALMA (ESO/NAOJ/NRAO)/PHANGS, S. Dagnello (NRAO)
June 8, 2021

Pasadena, CA—A team of astronomers, including Carnegie’s Guillermo Blanc, used the  Atacama Large Millimeter/submillimeter Array (ALMA) to complete the first census of molecular clouds in the nearby universe, revealing that contrary to previous scientific opinion, these stellar nurseries do not all look and act the same. In fact, they’re as diverse as the people, homes, neighborhoods, and regions that make up our own world. 

Stars are formed out of clouds of dust and gas called molecular clouds, or stellar nurseries. Each stellar nursery in the universe can form thousands or even tens of thousands of new stars during its lifetime. Between 2013 and 2019

This artist's impression of the quasar P172+18. Credit: ESO/M. Kornmesser.
March 8, 2021

Pasadena, CA— The Magellan Baade telescope at Carnegie’s Las Campanas Observatory played an important role in the discovery of the most-distant known quasar with a bright radio emission, which was announced by a Max Planck Institute for Astronomy in Heidelberg and European Southern Observatory-led team and published in The Astrophysical Journal. One of the fastest-growing supermassive black holes ever observed, it is emitting about 580 times the energy as the entire Milky Way galaxy.

Quasars are incredibly luminous supermassive black holes accreting matter at the centers of massive galaxies. Their brightness allows astronomers to study them in detail even at great

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

Ana Bonaca is Staff Member at Carnegie Observatories. Her specialty is stellar dynamics and her research aims to uncover the structure and evolution of our galaxy, the Milky Way, especially the dark matter halo that surrounds it. In her research, she uses space- and ground-based telescopes to measure the motions of stars, and constructs numerical experiments to discover how dark matter affected them.

She arrived in September 2021 from Harvard University where she held a prestigious Institute for Theory and Computation Fellowship. 

Bonaca studies how the uneven pull of our galaxy’s gravity affects objects called globular clusters—spheres made up of a million

Peter Gao's research interests include planetary atmospheres; exoplanet characterization; planet formation and evolution; atmosphere-surface-interior interactions; astrobiology; habitability; biosignatures; numerical modeling.

His arrival in September 2021 continued Carnegie's longstanding tradition excellence in exoplanet discovery and research, which is crucial as the field prepares for an onslaught of new data about exoplanetary atmospheres when the next generation of telescopes come online.

Gao has been a part of several exploratory teams that investigated sulfuric acid clouds on Venus, methane on Mars, and the atmospheric hazes of Pluto. He also

Anne Pommier's research is dedicated to understanding how terrestrial planets work, especially the role of silicate and metallic melts in planetary interiors, from the scale of volcanic magma reservoirs to core-scale and planetary-scale processes.

She joined Carnegie in July 2021 from U.C. San Diego’s Scripps Institution of Oceanography, where she investigated the evolution and structure of planetary interiors, including our own Earth and its Moon, as well as Mars, Mercury, and the moon Ganymede.

Pommier’s experimental petrology and mineral physics work are an excellent addition to Carnegie’s longstanding leadership in lab-based mimicry of the

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation