Josh Simon uses observations of nearby galaxies to study problems related to dark matter, chemical evolution, star formation, and the process of galaxy evolution.

In one area he looks at peculiarly dark galaxies. Interestingly, some galaxies are so dark they glow with the light of just a few hundred Suns. Simon and colleagues have determined that a tiny, very dim galaxy orbiting the Milky Way, called Segue 1, is the darkest galaxy ever found and has the highest dark matter density ever found. His team has also laid to rest a debate about whether Segue 1 really is a galaxy or a globular cluster—a smaller group of stars that lacks dark matter. Their findings make Segue 1 a promising laboratory to study dark matter, particularly the possibility that dark matter could be seen for the first time via a detection of gamma rays emanating from colliding dark matter particles.

Dark matter is the mysterious nonluminous material that makes up about most of the universe.  Dark energy is a mysterious repulsive force. Together they make up  about 95% of the universe. The rest--all observable matter--adds up to less than 5% of the universe.  Nearby dwarf galaxies have the highest measured densities of dark matter, making them ideal for dark matter studies, but that proximity also has a downside. Star systems so close to the massive Milky Way are subject to the acceleration of their stars by our galaxy’s tidal forces, an effect that can mimic the presence of dark matter. The lack of bright stars in dim dwarfs also makes it difficult to measure the velocities of enough stars for sufficient certainty. Simon and company overcame these hurdles with a comprehensive program that measured and analyzed the speed and chemistry of 397 stars in the vicinity of Segue 1.

 A major difference between galaxies and globular clusters--spherical collections of stars that are gravitationally bound--is that the stars in galaxies contain widely varying amounts of iron and other heavy elements, while stars in clusters do not. The new observations revealed that some Segue 1 stars have 50 times less iron than others in the galaxy, demonstrating conclusively that Segue 1 cannot be a globular cluster.

In collaboration with astronomers, Simon also showed that the high speeds of the Segue 1 stars are not caused by invisible binary companion stars, firming up the estimates of the amount of dark matter in the galaxy. Ongoing observations with NASA’s Fermi Gamma-ray Space Telescope are searching for signals from Segue 1 and other dwarfs, which would provide astronomers with concrete proof that their dark matter theories are on the right track\

Simon received his B.S. in physics from Stanford University and his M.A. and Ph. D. in astrophysics from UC-Berkeley. He was a postdoctoral scholar at Caltech from 2005-2008 and  the Vera Rubin Fellow at Carnegie from  2008 to 2010. For more information see http://obs.carnegiescience.edu/users/jsimon

Scientific Area: 

Explore Carnegie Science

January 24, 2017

Pasadena, CA –The Giant Magellan Telescope Organization (GMTO) announces the appointment of physicist Robert N. Shelton to become its president, effective February 20, 2017. Shelton will lead the organization behind the development of the 24.5-meter Giant Magellan Telescope (GMT), which is poised to be the world’s largest astronomical telescope when operational in the next decade.  Shelton will work closely with the GMTO Board of Directors, the leadership at the partner institutions, and the GMT team to complete construction of the observatory.

As a founding institution of the Giant Magellan Telescope, Carnegie President Matthew Scott remarked, “Robert Shelton is an ideal choice

November 16, 2016

Pasadena, CA – The Giant Magellan Telescope Organization (GMTO) today announced the appointment of Walter E. Massey, PhD, and Taft Armandroff, PhD, to the positions of Board Chair and Vice Chair, respectively. Continuing their involvement in new leadership capacities, Massey and Armandroff will guide the GMTO Board, overseeing the construction of the 24.5-meter Giant Magellan Telescope (GMT) in the Chilean Andes and working to complete the partnership of universities, research institutions and private donors who will contribute to the construction and operation of the GMT.

Poised to be the first of a new generation of extremely large telescopes, the GMT will be the largest optical

October 3, 2016

Pasadena, CA— A star known by the unassuming name of KIC 8462852 in the constellation Cygnus has been raising eyebrows both in and outside of the scientific community for the past year. In 2015 a team of astronomers announced that the star underwent a series of very brief, non-periodic dimming events while it was being monitored by NASA’s Kepler space telescope, and no one could quite figure out what caused them. A new study from Carnegie’s Josh Simon and Caltech’s Ben Montet has deepened the mystery.  

Simon and Montet’s findings caused a stir in August, when they were posted on a preprint server while their paper was being reviewed. Now their work is now accepted for publication

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, M. Kornmesser
September 12, 2016

Pasadena, CA— Quasars are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They shine so brightly that they are often referred to as beacons and are among the most-distant objects in the universe that we can currently study. New work from a team led by Carnegie’s Eduardo Bañados has discovered 63 new quasars from when the universe was only a billion years old. (It’s about 14 billion years old today.)

This is the largest sample of such distant quasars presented in a single scientific article, almost doubling the number of ancient quasars previously known. The findings will be published by The Astrophysical Journal Supplement Series.

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have improved the

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Gwen Rudie studies the chemical and physical properties of very distant, so-called  high-redshift galaxies and their surrounding circumgalactic medium. She is primarily an observational astronomer working on the analysis and interpretation of high-resolution spectroscopy of high-redshift Quasi Stellar Objects and low to medium-resolution near-infrared and optical spectroscopy of high-redshift galaxies. She is interested in understanding the intergalactic medium as a tool for understanding galaxy evolution and the physical properties of very distant galaxies such as the composition of stars and their star formation rates

Rudie received her AB from Dartmouth College and her Ph D