Washington, D.C.—Global Ecology NSF Fellow Mary Whelan has been honored with Carnegie’s fifth Postdoctoral Innovation and Excellence (PIE) Award. These prizes are made through nominations from the...
Explore this Story
Washington, DC—New research from two Carnegie scientists has serious implications for the development of management strategies to reduce nutrient runoff in waterways and coastal areas. Human...
Explore this Story
Stanford, CA— What would we do differently if sea level were to rise one foot per century versus one foot per decade? Until now, most policy and research has focused on adapting to specific amounts...
Explore this Story
Stanford, CA—Using software tools developed by Near Zero, a research group hosted by the Carnegie Institution for Science’s Department of Global Ecology, a team...
Explore this Story
Stanford, CA—One of the world’s longest-running, most comprehensive climate change experiments produced some surprising results. The extensive experiment subjected grassland ecosystems to sixteen...
Explore this Story
Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Carnegie
Washington, DC— Well-understood physical and chemical processes can easily explain the alleged evidence of a secret, large-scale atmospheric spraying program, commonly referred to as “chemtrails” or...
Explore this Story
Washington, DC—Offering a rare insider analysis of the climate assessment process, Carnegie’s Katharine Mach and colleagues at the Department of Global Ecology examined the writing and editing...
Explore this Story
Washington, DC— It is imperative that society learn more about how climate change contributes to episodic and very severe water quality impairments, such as the harmful algal bloom that caused...
Explore this Story

Pages

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the...
Explore this Project
Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation...
Explore this Project
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
Greg Asner was the first staff scientist hired by the fledgling Department of Global Ecology in 2001. The new department grew out of over 100 years of planet research at Carnegie, including the establishment of the field of ecology, to celebrate 100 years of Carnegie science and  address  the...
Meet this Scientist
For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive...
Meet this Scientist
You May Also Like...
Washington, DC—Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These changes would linger even...
Explore this Story
“The system produces maps that tell us more about an ecosystem in a single airborne overpass than what might be achieved in a lifetime of work on the ground,” Greg Asner tells National Geographic in...
Explore this Story
A pair of researchers have new evidence to support a link between cyclical comet showers and mass extinctions, including the one that they believe wiped out the dinosaurs 66 million years ago. NYU's ...
Explore this Story

Explore Carnegie Science

January 17, 2017

Washington, D.C.—Global Ecology NSF Fellow Mary Whelan has been honored with Carnegie’s fifth Postdoctoral Innovation and Excellence (PIE) Award. These prizes are made through nominations from the department directors and are chosen by the Office of the President. Whelan was awarded the prize for both her scientific and cultural contributions to the Carnegie community.

Whelan’s work on atmospheric trace gas biogeochemistry shows an enormous breadth of skills, knowledge, and curiosity. She asks both “how do we measure it?” and “what does it tell us about the world?”—two scientific questions that are increasingly “siloed”  in the environmental sciences. She spends hours of

November 14, 2016

Washington, DC—New research from two Carnegie scientists has serious implications for the development of management strategies to reduce nutrient runoff in waterways and coastal areas.

Human activities, including agriculture and fossil fuel use, have completely altered the biochemical cycle of nitrogen. In this cycle, nitrogen circulates in various forms through terrestrial, aquatic, and atmospheric systems. In the United States, the amount of nitrogen originating from human sources, particularly fertilizer, is four times the amount that comes from natural sources. The U.S. Environmental Protection Agency estimates that 28 percent of streams and 20 percent of lakes around the

October 4, 2016

Stanford, CA— What would we do differently if sea level were to rise one foot per century versus one foot per decade? Until now, most policy and research has focused on adapting to specific amounts of climate change and not on how fast that climate change might happen.

Using sea-level rise as a case study, researchers at Carnegie’s Department of Global Ecology have developed a quantitative model that considers different rates of sea-level rise, in addition to economic factors, and shows how consideration of rates of change affect optimal adaptation strategies. If the sea level will rise slowly, it could still make sense to build near the shoreline, but if the sea level is going to

September 13, 2016

Stanford, CA—Using software tools developed by Near Zero, a research group hosted by the Carnegie Institution for Science’s Department of Global Ecology, a team of researchers has completed the largest expert survey yet on any energy technology, in this case wind energy.

Near Zero conducts research and assessment of energy and climate issues, focusing on integrating quantitative analysis with expert judgment. In this way, they inform decision-making to accelerate the global transition to a near-zero emission energy system. To support this work, Near Zero has developed open-source software tools to examine where experts agree and disagree and why.

Using Near Zero’s online

No content in this section.

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

Greg Asner was the first staff scientist hired by the fledgling Department of Global Ecology in 2001. The new department grew out of over 100 years of planet research at Carnegie, including the establishment of the field of ecology, to celebrate 100 years of Carnegie science and  address  the pressing 21st century questions  facing our planet. 

Asner brought a unique approach to the discipline—he marries sophisticated satellite and airborne mapping  technology with traditional gum-shoe fieldwork to develop innovative techniques to measure the Earth.

Asner has pioneered new methods for investigating tropical deforestation, degradation, ecosystem diversity, invasive species,

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America's Climate

For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive team of researchers who investigate the basics of climate change. Field has authored more than 200 scientific publications and is cochair of the U. N.'s Intergovernmental Panel on Climate Change (IPCC) Working Group 2. The IPCC Fourth Assessment, for which Field was a coordinating author, was published in 2007. He was coeditor of the March 2012 IPCC Special Report on Managing the Risks of Extreme