Smokestacks photo from the public domain
Washington, DC— When it comes to aerosol pollution, as the old real estate adage says, location is everything. Aerosols are tiny particles that are spewed into the atmosphere by human activities,...
Explore this Story
New research, led by former Carnegie postdoctoral fellow Summer Praetorius, shows that changes in the heat flow of the northern Pacific Ocean may have a larger effect on the Arctic climate than...
Explore this Story
Robin Martin and Katie Kryston search the Spectranomics Library for a species. Photo by Greg Asner.
Washington, DC—Last week, the Natural Sciences and Engineering Research Council of Canada announced a multimillion dollar grant to support the launch of the ...
Explore this Story
Seagrass. California, Channel Islands NMS. Claire Fackler, CINMS, NOAA.
Washington, DC—Seagrass meadows could play a limited, localized role in alleviating ocean acidification in coastal ecosystems, according to new work led by Carnegie’s...
Explore this Story
Washington, DC—Carbon dioxide emissions from human activities must approach zero within several decades to avoid risking grave damage from the effects of climate change.  This will require creativity...
Explore this Story
Washington, DC— Carnegie’s Greg Asner advanced through a venture capital-style pitch group challenge to win a $250,000 grant from Battery Powered...
Explore this Story
Washington, DC—Carnegie scientist Greg Asner and his Reefscape Project play a crucial role in a new partnership that’s responding to the crisis facing the world’s coral reefs and the need for global...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Scubazoo
Sabah, Malaysia—Degraded forests play a crucial role in the future survival of Bornean elephants. A new study, published in the journal...
Explore this Story

Pages

The Carnegie Airborne Observatory (CAO), developed by GregAsner, is a fixed-wing aircraft that sweeps laser light across the vegetation canopy to image it in brilliant 3-D. The data can determine the location and size of each tree at a resolution of 3.5 feet (1.1 meter), a level of detail that is...
Explore this Project
Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional...
Meet this Scientist
Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales....
Meet this Scientist
You May Also Like...
Now is the perfect moment for satellites to start measuring biodiversity, Carnegie's Greg Asner tells Mongabay. “It’s the perfect storm of conditions,” he says. More
Explore this Story
Washington, D.C. – For years, scientists have debated how big a role elephants play in toppling trees in South African savannas. Tree loss is a natural process, but it is increasing in some regions,...
Explore this Story
About 40 percent of northern Malaysian Borneo’s carbon stocks exist in forests that are not designated for maximum protections, according to new research from the Carnegie Airborne Observatory team....
Explore this Story

Explore Carnegie Science

Smokestacks photo from the public domain
August 16, 2018

Washington, DC— When it comes to aerosol pollution, as the old real estate adage says, location is everything.

Aerosols are tiny particles that are spewed into the atmosphere by human activities, including burning coal and wood. They have negative effects on air quality—damaging human health and agricultural productivity.

While greenhouse gases cause warming by trapping heat in the atmosphere, some aerosols can have a cooling effect on the climate—similar to how emissions from a major volcanic eruption can cause global temperatures to drop.  This occurs because the aerosol particles cause more of the Sun’s light to be reflected away from the planet. Estimates indicate that

August 7, 2018

New research, led by former Carnegie postdoctoral fellow Summer Praetorius, shows that changes in the heat flow of the northern Pacific Ocean may have a larger effect on the Arctic climate than previously thought. The findings are published in the August 7, 2018, issue of Nature Communications.

The Arctic is experiencing larger and more rapid increases in temperature from global warming more than any other region, with sea-ice declining faster than predicted. This effect, known as Arctic amplification, is a well-established response that involves many positive feedback mechanisms in polar regions.

What has not been well understood is how sea-surface temperature patterns and

Robin Martin and Katie Kryston search the Spectranomics Library for a species. Photo by Greg Asner.
August 2, 2018

Washington, DC—Last week, the Natural Sciences and Engineering Research Council of Canada announced a multimillion dollar grant to support the launch of the Canadian Airborne Biodiversity Observatory, which will specialize spectranomics research, a revolutionary technique devised in 2009 by Carnegie’s Greg Asner and Robin Martin.

This combined fieldwork-and-laboratory effort deploys a flying laboratory to determine the relationship between the function and biological diversity of forest canopy plants, which is now being applied to coral reef communities, too.

“CABO’s adoption of our approach represents a milestone for our Carnegie Airborne Observatory team’s broad impact on

Seagrass. California, Channel Islands NMS. Claire Fackler, CINMS, NOAA.
July 31, 2018

Washington, DC—Seagrass meadows could play a limited, localized role in alleviating ocean acidification in coastal ecosystems, according to new work led by Carnegie’s David Koweek and including Carnegie’s Ken Caldeira and published in Ecological Applications.

When coal, oil, or gas is burned, the resulting carbon dioxide is released into the atmosphere where it is the driving force behind global climate change. But this atmospheric carbon dioxide is also absorbed into the ocean where chemical reactions with the seawater produce carbonic acid, which is corrosive to marine life, particularly to organisms like mussels and oysters that construct their shells and exoskeletons out of

No content in this section.

Carnegie researchers are developing new scientific approaches that integrate phylogenetic, chemical and spectral remote sensing perspectives - called Spectranomics - to map canopy function and biological diversity throughout tropical forests of the world.

Mapping the composition and chemistry of species in tropical forests is critical to understanding forest functions related to human use and climate change. However, high-resolution mapping of tropical forest canopies is challenging because traditional field, airborne and satellite measurements cannot easily measure the canopy chemical or taxonomic variation among species over large regions. New technology, such as the Carnegie

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves” passed its 1,

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until he joined the

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America's Climate