Washington, DC— Carnegie’s Greg Asner advanced through a venture capital-style pitch group challenge to win a $250,000 grant from Battery Powered...
Explore this Story
Washington, DC—Carnegie scientist Greg Asner and his Reefscape Project play a crucial role in a new partnership that’s responding to the crisis facing the world’s coral reefs and the need for global...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Scubazoo
Sabah, Malaysia—Degraded forests play a crucial role in the future survival of Bornean elephants. A new study, published in the journal...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Aaron Takeo Ninokawa of UC Davis
Washington, DC— Ocean acidification will severely impair coral reef growth before the end of the century if carbon dioxide emissions continue unchecked, according to new research on Australia’s Great...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, public domain
Washington, DC—Wind and solar power could generate most but not all electricity in the United States, according to an analysis of 36 years of weather data by Carnegie’s Ken Caldeira, and three...
Explore this Story
Washington, DC— The climate models that project greater amounts of warming this century are the ones that best align with observations of the current climate, according to a new paper from Carnegie’s...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Carnegie Airborne Observatory, Greg Asner.
Washington, DC— About 40 percent of northern Malaysian Borneo’s carbon stocks exist in forests that are not designated for maximum protections, according to...
Explore this Story
________________ Tuesday, November 17, 2017:  ________________ Tuesday, November 14, 2017:  ________________ Sunday, November 12, 2017: ________________ Thursday, November 9, 2017:...
Explore this Story

Pages

The Carnegie Airborne Observatory (CAO), developed by GregAsner, is a fixed-wing aircraft that sweeps laser light across the vegetation canopy to image it in brilliant 3-D. The data can determine the location and size of each tree at a resolution of 3.5 feet (1.1 meter), a level of detail that is...
Explore this Project
Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation...
Explore this Project
Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the...
Explore this Project
Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional...
Meet this Scientist
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
You May Also Like...
Carnegie staff scientist Greg Asner has been awarded the 22nd Heinz Award for the Environment,* “ for developing ultra-high-resolution imaging technology that provides unprecedented detail on the...
Explore this Story
Washington, D.C.— In the face of global climate change, increasing the use of renewable energy resources is one of the most urgent challenges facing the world. Further development of one resource,...
Explore this Story
“I started out thinking that it was all about information, and if we only got the right information to the right people, then the right things would happen,” Carnegie's Ken Caldeira tells WIRED...
Explore this Story

Explore Carnegie Science

June 22, 2018

Washington, DC— Carnegie’s Greg Asner advanced through a venture capital-style pitch group challenge to win a $250,000 grant from Battery Powered that will enable his flying laboratory team to map the coral of the Hawaiian Islands.

“Mapping the health of Hawaii’s coral communities has been a long-term dream of mine going back to the early days of my scientific career,” Asner said. “This funding will finally allow me to do so comprehensively.”

Battery Powered is the member-led giving program of a private San Francisco social club called The Battery. Three times a year, the members select a different theme and hear pitches from experts and organizations who work on the front

June 4, 2018

Washington, DC—Carnegie scientist Greg Asner and his Reefscape Project play a crucial role in a new partnership that’s responding to the crisis facing the world’s coral reefs and the need for global maps and monitoring systems by harnessing satellite imagery and big data processing. Less than a quarter of the world’s reefs are sporadically mapped or monitored by visual assessment from SCUBA and light aircraft or, in a very few places, lower resolution satellite images.

The partnership will provide the first-ever seamless mosaic of high resolution satellite imagery of the world’s coral reefs and will engage with the global coral reef science and management communities to deliver

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Scubazoo
March 19, 2018

Sabah, Malaysia—Degraded forests play a crucial role in the future survival of Bornean elephants. A new study, published in the journal Biological Conservation, finds that forests of surprisingly short stature are ideal for elephants.

“Our study indicates that forests with a mean canopy height of 13 meters (about 43 feet) were those most utilized by Bornean elephants. These forests are consistent with degraded landscapes or those recovering from previous logging, or clearance,” noted lead author Luke Evans, a postdoctoral researcher at Carnegie and Danau Girang Field Centre. “The study utilized GPS tracking data from 29 individual elephants that were collared across Sabah,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Aaron Takeo Ninokawa of UC Davis
March 14, 2018

Washington, DC— Ocean acidification will severely impair coral reef growth before the end of the century if carbon dioxide emissions continue unchecked, according to new research on Australia’s Great Barrier Reef led by Carnegie’s Ken Caldeira and the California Academy of Sciences’ Rebecca Albright.

Their work, published in Nature, represents the first ocean acidification experiment in which seawater was made artificially acidic by the addition of carbon dioxide and then allowed to flow across a natural coral reef community. The acidity of the seawater was increased to reflect end-of-century projections if carbon dioxide from greenhouse gas emissions are not abated.

No content in this section.

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

The Carnegie Airborne Observatory (CAO), developed by GregAsner, is a fixed-wing aircraft that sweeps laser light across the vegetation canopy to image it in brilliant 3-D. The data can determine the location and size of each tree at a resolution of 3.5 feet (1.1 meter), a level of detail that is unprecedented. By combining field surveys with this airborne mapping and high-resolution satellite monitoring the team has been able to detail myriad ecological features of forests around the world.

As one example, Carnegie scientists with the Peruvian Ministry of Environment mapped the true extent of gold mining in the biologically diverse region of Madre de Dios in the Peruvian Amazon.

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America's Climate

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves” passed its 1,

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until he joined the

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the