: A blue, boron-bearing diamond with dark inclusions of a mineral called ferropericlase, which were examined as part of this study.  This gem weighs 0.03 carats.  Photo by Evan Smith/GIA.
Washington, DC—Blue diamonds—like the world-famous Hope Diamond at the National Museum of Natural History—formed up to four times deeper in the Earth’s mantle than most other diamonds, according to...
Explore this Story
An illustration showing how the orbits of the newly discovered moons (bold) fit into the known orbital groupings of the Jovian moons (not bold). The "oddball" with the proposed name Valetudo orbits in the prograde, but crosses the orbits of the planet's o
Washington, DC—Twelve new moons orbiting Jupiter have been found—11 “normal” outer moons, and one that they’re calling an “oddball.”  This brings Jupiter’s total number of known moons to a whopping...
Explore this Story
Washington, DC—A team of scientists including Carnegie’s Michael Ackerson and Bjørn Mysen revealed that granites from Yosemite National Park contain minerals that crystallized at much lower...
Explore this Story
Washington, DC—New work from an international team of astronomers including Carnegie’s Jaehan Bae used archival radio telescope data to develop a new method for finding very young extrasolar planets...
Explore this Story
Washington, DC— NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record of habitability and...
Explore this Story
Washington, DC—A team of researchers including Carnegie’s Bob Hazen is using network analysis techniques—made popular through social media applications—to find patterns in Earth’s natural history, as...
Explore this Story

Pages

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000...
Explore this Project
Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of...
Explore this Project
Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet...
Explore this Project
Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies. The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium,...
Meet this Scientist
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics of the area and shape of...
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
You May Also Like...
Washington, DC—A group of citizen scientists and professional astronomers, including Carnegie’s Jonathan Gagné, joined forces to discover an unusual hunting ground for exoplanets. They found a star...
Explore this Story
Washington, D.C.—The Solar System has a new most-distant member, bringing its outer frontier into focus. New work from Carnegie's Scott Sheppard and Chadwick Trujillo of the Gemini Observatory...
Explore this Story
The American Institute of Physics’ Center for History of Physics has awarded the Carnegie Institution for Science a $10,000 grant to organize and preserve the archives of scientist Oliver H. Gish and...
Explore this Story

Explore Carnegie Science

Burke adjusting recording instruments at a Carnegie radio receiver truck. Photo: DTM Archives, via the Baltimore Sun.
August 10, 2018

Bernard Burke, distinguished MIT astrophysicist and former staff scientist at Carnegie's Department of Terrestrial Magnetism, died August 5. He was 90. 

Burke, who joined the department's in 1953, was an integral member of its astronomy group until he left to be professor of physics at MIT in 1965, where his work shifted to, among other things, the detection of gravitational lensing. He also played a key role in the development of Very Long Baseline Interferometry (VLBI), which enables high-resolution imaging of cosmic structures. He was elected to the National Academy of Sciences in 1970 and served as president of the American Astronomical Society from 1986 to 1988. He was an

: A blue, boron-bearing diamond with dark inclusions of a mineral called ferropericlase, which were examined as part of this study.  This gem weighs 0.03 carats.  Photo by Evan Smith/GIA.
July 31, 2018

Washington, DC—Blue diamonds—like the world-famous Hope Diamond at the National Museum of Natural History—formed up to four times deeper in the Earth’s mantle than most other diamonds, according to new work published on the cover of Nature.

“These so-called type IIb diamonds are tremendously valuable, making them hard to get access to for scientific research purposes,” explained lead author Evan Smith of the Gemological Institute of America, adding, “and it is very rare to find one that contains inclusions, which are tiny mineral crystals trapped inside the diamond.”

Inclusions are remnants of the minerals from the rock in which the diamond crystallized and can tell

An illustration showing how the orbits of the newly discovered moons (bold) fit into the known orbital groupings of the Jovian moons (not bold). The "oddball" with the proposed name Valetudo orbits in the prograde, but crosses the orbits of the planet's o
July 16, 2018

Washington, DC—Twelve new moons orbiting Jupiter have been found—11 “normal” outer moons, and one that they’re calling an “oddball.”  This brings Jupiter’s total number of known moons to a whopping 79—the most of any planet in our Solar System.

A team led by Carnegie’s Scott S. Sheppard first spotted the moons in the spring of 2017 while they were looking for very distant Solar System objects as part of the hunt for a possible massive planet far beyond Pluto.  

In 2014, this same team found the object with the most-distant known orbit in our Solar System and was the first to realize that an unknown massive planet at the fringes of our Solar System, far beyond Pluto, could

June 27, 2018

Washington, DC—A team of scientists including Carnegie’s Michael Ackerson and Bjørn Mysen revealed that granites from Yosemite National Park contain minerals that crystallized at much lower temperatures than previously thought possible. This finding upends scientific understanding of how granites form and what they can teach us about our planet’s geologic history. Their work is published in Nature. 

Granites are igneous rocks comprised predominately of the minerals quartz and feldspar.  They are the link between igneous processes that occur within the Earth and volcanic rocks that solidified on Earth’s surface.

“Granites are the ultimate product of the processes by which

No content in this section.

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary census.

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two years,

Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature superconductor under pressure—a state predicted by theory, but thus far unattained—to discover new superconductors, and to learn what happens to materials in Earth’s deep interior where pressure and temperature conditions are extreme. 

Recently, a team including Struzhkin was the first to discover the conditions under which nickel oxide can turn into an electricity-conducting metal. Nickel

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive types of

Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas giant and ice giant protoplanets. His observational works centers on the Carnegie Astrometric Planet Search project, which has been underway for the last decade at Carnegie's Las Campanas Observatory in Chile.

While fragmentation is universally recognized as the dominant formation mechanism for binary and multiple stars, there are still major questions. The most important of these is the

Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics of the area and shape of the Earth--to identify, model and interpret this ground deformation.

She uses data from radar called Interferometric Synthetic Aperture Radar (InSAR), and data from the Global Positioning System (GPS) to characterize ground motion during volcanic unrest. She also collects gravity data, which indicate changes in mass and/or density underground. These data sets, combined with the surface