Washington, DC— Carnegie astronomers Stephen Shectman and Alycia Weinberger were selected for the inaugural class of Fellows of the American Astronomical Society in recognition of their “...
Explore this Story
Photo is by Cindy Werner, courtesy of Alaska Volcano Observatory.
Washington, DC— A new approach to analyzing seismic data reveals deep vertical zones of low seismic velocity in the plumbing system underlying Alaska’s Cleveland volcano, one of the most-...
Explore this Story
Photo credit: Max Hirshfeld Studio, courtesy of AIP Emilio Segrè Visual Archives
Washington, D.C.— Carnegie trustee emeritus Frank Press, a National Medal of Science laureate and former president of the National Academy of Sciences, died January 29 at his home in Chapel...
Explore this Story
Carnegie Earth and Planets Director Richard Carlson
Washington, DC — Richard Carlson, director of Carnegie’s Earth and Planets division, has been chosen to receive the Geochemical Society’s highest honor, the Victor Moritz...
Explore this Story
Artist’s concept by Robin Dienel, courtesy of Carnegie Institution for Science
Washington, DC— A “cold Neptune” and two potentially habitable worlds are part of a cache of five newly discovered exoplanets and eight exoplanet candidates found orbiting nearby...
Explore this Story
Washington, DC— Every school child learns about the water cycle—evaporation, condensation, precipitation, and collection. But what if there were a deep Earth component of this process...
Explore this Story
Image Credit: NASA, ESA, JPL, SSI, Cassini Imaging Team
Washington, DC— Saturn’s icy moon Enceladus is of great interest to scientists due to its subsurface ocean, making it a prime target for those searching for life elsewhere. New research...
Explore this Story
Artist’s conception of Kepler-432b, courtesy of MarioProtIV/Wikimedia Commons.
Pasadena, CA— A surprising analysis of the composition  of gas giant exoplanets and their host stars shows that there isn’t a strong correlation between their compositions when it...
Explore this Story

Pages

Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 -...
Explore this Project
Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s...
Meet this Scientist
Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is...
Meet this Scientist
Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new...
Meet this Scientist
You May Also Like...
"Then about a decade ago, Carlson found room for doubt, after comparing Earth rocks and space rocks using better instruments..." Read More  
Explore this Story
A “cold Neptune” and two potentially habitable worlds are part of a cache of five newly discovered exoplanets and eight exoplanet candidates found orbiting nearby red dwarf stars by a...
Explore this Story
Brown dwarfs, the larger cousins of giant planets, undergo atmospheric changes from cloudy to cloudless as they age and cool. A team of astronomers measured for the first time the temperature at...
Explore this Story

Explore Carnegie Science

February 26, 2020

Washington, DC— Carnegie astronomers Stephen Shectman and Alycia Weinberger were selected for the inaugural class of Fellows of the American Astronomical Society in recognition of their “extraordinary achievement and service” to the field. 

The newly established accolade will honor members of the organization for original research, innovative technique and instrumentation development, significant public outreach and educational efforts, and other noteworthy contributions to the society. To launch the program, the AAS selected 200 “legacy” fellows, including Shectman and Weinberger. Carnegie trustee Sandra Faber of UC Santa Cruz and former-

Photo is by Cindy Werner, courtesy of Alaska Volcano Observatory.
February 4, 2020

Washington, DC— A new approach to analyzing seismic data reveals deep vertical zones of low seismic velocity in the plumbing system underlying Alaska’s Cleveland volcano, one of the most-active of the more than 70 Aleutian volcanoes. The findings are published in Scientific Reports by Helen Janiszewski, recently of Carnegie, now at the University of Hawaiʻi at Mānoa, and Carnegie’s Lara Wagner and Diana Roman. 

Arc volcanoes like Cleveland form over plate boundaries where one tectonic plate slides beneath another. They are linked to the Earth’s mantle by complex subsurface structures that cross the full thickness of the planet's crust. These

Photo credit: Max Hirshfeld Studio, courtesy of AIP Emilio Segrè Visual Archives
January 31, 2020

Washington, D.C.— Carnegie trustee emeritus Frank Press, a National Medal of Science laureate and former president of the National Academy of Sciences, died January 29 at his home in Chapel Hill, N.C. He was 95. Press was active on the Carnegie board of trustees for 14 years and was the Cecil and Ida Green Senior Fellow at the institution’s Department of Terrestrial Magnetism from 1993 to 1997.

A distinguished geophysicist whose contributions to plate tectonics revolutionized the field, Press authored more than 150 papers and co-authored two foundational Earth science textbooks. He also made tremendous contributions to science policy and helped shape the U.S.

Carnegie Earth and Planets Director Richard Carlson
January 21, 2020

Washington, DC — Richard Carlson, director of Carnegie’s Earth and Planets division, has been chosen to receive the Geochemical Society’s highest honor, the Victor Moritz Goldschmidt Award, in recognition of his forefront research into the formation of the Solar System and the geologic history of the Earth, the society announced Tuesday.

The society will present the award to Carlson at the Goldschmidt Conference, to be held in Honolulu in June.

“I am deeply honored to receive the V.M. Goldschmidt Award, which recognizes our efforts to understand the origin and evolution of Earth’s continental crust on Earth and the consequences of its formation

No content in this section.

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

What sets George Cody apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques to analyzing the organic processes that alter sediments as they mature into rock inside the Earth and the molecular structure of extraterrestrial organics.

Wondering about where we came from has occupied the human imagination since the dawn of consciousness. Using samples from comets and meteorites, George Cody tracks the element carbon as it moves from the interstellar medium, through

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions.

Most of Roman’s research focuses on understanding changes in seismicity and stress in response to the migration of magma through volcanic conduits, and on developing techniques and strategies for monitoring active or restless volcanoes through the analysis of high-frequency volcanic seismicity.

Roman is also interested in understanding the seismicity at quiet volcanoes, tectonic and hidden volcanic

Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate.

Douglas Rumble’s research is centered on these three stable isotopes of oxygen and the four stable isotopes of sulfur 32S , 33S , 34S, and 36S. In addition to