The paper used in manufacturing this yearbook contains 30% post-consumer recycled fiber. By using recycled fiber in place of virgin fiber, the Carnegie Institution preserved 13,250 trees, saved 38 pounds of waterborne waste, saved 5,627 gallons of water, and prevented 1,226 pounds of greenhouse gases. The energy used to print the report was produced by wind power. Using this energy source for printing saved 2,627 pounds of CO2 emissions, which is equivalent to saving 1,786 miles of automobile travel.
The President’s Report

July 1, 2006 - June 30, 2007
Former Presidents
Daniel C. Gilman, 1902–1904
Robert S. Woodward, 1904–1920
John C. Merriam, 1921–1938
Vannevar Bush, 1939–1955
Caryl P. Haskins, 1956–1971
James D. Ebert, 1978–1987
Maxine F. Singer, 1988–2002
Michael E. Gellert (Acting President, Jan.–April 2003)

Former Trustees
Philip H. Abelson, 1978–2004
Alexander Agassiz, 1904–1905
Lord Ashby of Brandon, 1967–1974
J. Paul Austin, 1976–1978
George G. Baldwin, 1925–1927
Thomas Barbour, 1934–1946
James F. Bell, 1935–1961
John S. Billings, 1902–1913
Robert Woods Bliss, 1936–1962
Amory H. Bradford, 1959–1972
Lindsay Bradford, 1940–1958
Omar N. Bradley, 1948–1969
Lewis M. Branscomb, 1973–1990
Robert S. Brookings, 1910–1929
James E. Burke, 1989–1993
John L. Cadwalader, 1903–1914
William W. Campbell, 1929–1938
John J. Carty, 1916–1932
Whitefoord R. Cole, 1925–1934
Frederic A. Delano, 1927–1949
John Diebold, 1975–2005
Cleveland H. Dodge, 1903–1923
William E. Dodge, 1902–1903
James D. Ebert, 1987–2001
Gerald M. Edelman, 1980–1987
Charles P. Fenner, 1914–1924
Michael Ference, Jr., 1968–1980
Homer L. Ferguson, 1927–1952
Simon Flexner, 1910–1914
W. Cameron Forbes, 1920–1955
James Forrestal, 1948–1949
William N. Frew, 1902–1915
Lyman J. Gage, 1902–1912
Walter S. Gifford, 1931–1966
Carl J. Gilbert, 1962–1983
Cass Gilbert, 1924–1934
Frederick H. Gillett, 1924–1935
Daniel C. Gilman, 1902–1908
Hanna H. Gray, 1974–1978
Crawford H. Greenewalt, 1952–1984
David Greenewalt, 1992–2003
William C. Greenough, 1975–1989
Patrick E. Haggerty, 1974–1975
John Hay, 1902–1905
Barklie McKee Henry, 1949–1966
Myron T. Herrick, 1915–1929
Abram S. Hewitt, 1902–1903
Henry L. Higginson, 1902–1919
Ethan A. Hitchcock, 1902–1909
Henry Hitchcock, 1902
Herbert Hoover, 1920–1949
William Wirt Howe, 1903–1909
Freeman A. Hrabowski III, 2002–2004
Charles L. Hutchinson, 1902–1904
Walter A. Jessup, 1938–1944
Frank B. Jewett, 1933–1949
George F. Jewett, Jr., 1983–1987
Antonia Ax:son Johnson, 1980–1994
Samuel P. Langley, 1904–1906
Ernest O. Lawrence, 1944–1958
Charles A. Lindbergh, 1934–1939
William Lindsay, 1902–1909
Henry Cabot Lodge, 1914–1924
Alfred L. Loomis, 1934–1973
Robert A. Lovett, 1948–1971
Seth Low, 1902–1916
Wayne MacVeagh, 1902–1907
Keith S. McHugh, 1950–1974
Andrew W. Mellon, 1924–1937
John C. Merriam, 1921–1938
Seeley G. Mudd, 1940–1968
Franklin D. Murphy, 1909–1936
Sally K. Ride, 1989–1994
Frederick C. Walcott, 1936–1952
Andrew D. White, 1902–1927
Frederic C. Walcott, 1931–1948
William H. Welch, 1906–1934
Gunnar Wessman, 1984–1987
Antonia Ax:son Johnson, 1980–1994
The Carnegie Institution of Washington was incorporated with these words in 1902 by its founder, Andrew Carnegie. Since then, the institution has remained true to its mission. At six research departments across the country, the scientific staff and a constantly changing roster of students, postdoctoral fellows, and visiting investigators tackle fundamental questions on the frontiers of biology, earth sciences, and astronomy.
Carnegie Institution

Trustees
- Michael E. Gellert, Chairman
- Suzanne Nora Johnson, Vice Chairman
- Deborah Rose, Secretary
- Euan Baird, Senior Trustee
- Remi Barbier
- Daniel N. Belin
- John C. Botts
- Michael Brin
- William T. Coleman, Jr., Senior Trustee
- Tom Cori
- John F. Crawford
- Edward E. David, Jr., Emeritus
- Michael A. Duffy
- W. Gary Ernst
- Sandra M. Faber
- Bruce W. Ferguson
- Stephen P. A. Fodor
- William K. Gayden
- Robert G. Goelet
- William T. Golden, Senior Trustee
- William R. Hearst III
- Richard E. Heckert, Emeritus
- Kazuo Inamori, Emeritus
- Mary-Claire King
- Gerald D. Laubach, Senior Trustee
- John D. Macomber, Senior Trustee
- Steven L. McKnight
- Burton J. McMurtry, Senior Trustee
- Jaylee Mead
- Frank Press, Senior Trustee
- William J. Rutter, Senior Trustee
- Robert C. Seamans, Jr., Emeritus
- Maxine F. Singer
- Christopher T. S. Stone
- David F. Swensen, Senior Trustee
- Charles H. Townes, Emeritus
- Thomas N. Urban, Senior Trustee
- Sidney J. Weinberg, Jr., Senior Trustee

President
- Richard A. Meserve

Directors
- Allan C. Spradling, Department of Embryology
- Russell J. Hemley, Geophysical Laboratory
- Christopher Field, Department of Global Ecology
- Wendy L. Freedman, The Crawford H. Greenewalt Chair, The Observatories
- Christopher Somerville, Department of Plant Biology
- Sean C. Solomon, Department of Terrestrial Magnetism
- G. Gary Kowalczyk, Administration and Finance
- Christine D. Smith, Chief Advancement Officer
- Gotthard Szághi-Szabó, Chief Information Officer
Contents

The President’s Commentary 6
Friends, Honors & Transitions 14
Research Highlights 23
Financial Profile 50
Personnel 56
Bibliography 72
The President’s Commentary
Preparing for the Future
Andrew Carnegie’s goal in establishing the institution was to advance scientific understanding by finding exceptional scientists and providing them with the means to pursue highly original work. This formula has proven highly successful; in each of our departments, we are accomplishing remarkable cutting-edge research. This reality is demonstrated by the coin of the scientific realm—the large number of articles published by our staff in prestigious peer-reviewed journals (see pages 72-87). It is also demonstrated by the recognition achieved by our scientists in the last decade—a Nobel Prize, three Balzan Prizes, a Lasker Prize, three Gruber Prizes, a Louisa Gross Horwitz Prize, the Lehmann Medal, the Dana Medal, and many others.

To prepare for the future, we should build on our demonstrated success and pursue a cluster of complementary goals:

Maintain the diversity of Carnegie science across our existing departments.

Carnegie supports a diverse range of scientific disciplines. All of our departments are vital and, I believe, have had impacts on scientific knowledge that are disproportionate to their sizes. This perspective is reinforced by my interactions with outside scientists and by the periodic, careful departmental reviews that are undertaken by visiting committees. As a result, each department deserves continuing support. We should not shift substantial resources away from one to grow or benefit another.
Carnegie Institution of Washington

Retain departmental flexibility to define and pursue scientific opportunities.

The scientific opportunities in given fields wax and wane over time. Carnegie has managed this reality by allowing the focus in each department to evolve. Perhaps the Department of Terrestrial Magnetism (DTM) provides the clearest example. Although it once investigated the subject indicated by its name, no serious work in that field has occurred for almost 80 years. The fundamental Carnegie guidance to allow substantial freedom to individual scientists to pursue research that promises significant advances has resulted in significant shifts in focus over time.

The preservation of this capacity to adapt implies a strategy of seeking, in the main, to avoid top-down direction of scientific activities. Rather, the institution should respond to the special opportunities for significant advances that are identified by individual scientists or departments. Because of the need to preserve core support of all departments, the financial capacity for change arises chiefly from funds that are redirected within individual departments, that are available at the margin, or that arise from support from government agencies, foundations, or individuals. Changes in departmental direction also arise through the appointment of new scientific staff, and the department directors play a critical role in these decisions.

Provide an exceptional research environment.

Attracting exceptional people to our scientific staff and providing an environment in which their research can flourish involves several components:

- Provide our scientists with freedom to define their own research agenda, and strive to minimize barriers that inhibit productive research.
- Ensure competitive salaries for both scientific staff and specialized support staff.
- Maintain the vibrancy of the research environment with high-quality postdocs. Postdocs are a means to propagate Carnegie’s special skills to the scientific world and to strengthen the connectivity of our staff to the broader scientific community.
- Ensure that equipment and instrumentation needs are met. The ordinary budget process, guided by priorities established by the department directors, has in the past limited equipment support too severely. We are now analyzing equipment requests, with the target of allocating 6-8% of our budget for equipment.
Preserve and enhance the institution’s financial base.

The Carnegie endowment enables the fulfillment of our mission: it allows our scientists to pursue more risky, more novel, or more long-range research than can typically be supported with outside funding. Fortunately, as a result of the considerable skills of our Finance committee and the generosity of our donors, we have been highly successful in the management of the endowment. It is now $450 million larger than if we had simply kept pace with inflation over the past 15 years. Careful efforts to invest the endowment prudently to maximize return consistent with reasonable risk have been and must remain a continuing high priority.

We must balance the use of the endowment to satisfy current needs against the obligation to meet the needs of future scientists. The fundamental discipline for achieving this balance is careful adherence to our spending rule. This discipline should be maintained, while recognizing that a special need may occasionally arise that justifies an expenditure in excess of that allowed by the spending rule.

To stretch our endowment dollars, it is appropriate for Carnegie scientists to seek outside funds (federal and private) to support our research. Because of the

1 The spending rule provides for the allocation of funds from the endowment to meet current needs that is defined as the sum of 70% of our most recent budget and 1.5% (5% of 30%) of the value of the endowment at the end of the most recent fiscal year, less an allowance for debt obligations. The allocation is examined on a yearly basis by the Budget and Operations committee.
varying availability in funding across scientific fields, there are differences in the proportion of each department’s budget that arises from outside funding. For example, our optical astronomers are typically less well supported from federal dollars than are our plant biologists. Hence we must accept the reality that some departments may be more dependent on the endowment than others.

In this connection, it is important to ensure that reliance on outside funds does not distort the work that is undertaken. That is, outside support should be sought solely because of the intrinsic merit of the scientific work, not simply to obtain additional money. The department directors play an important role in ensuring that outside funding facilitates worthwhile scientific work consistent with our mission.

The enhancement of the institution’s financial capacity requires modernization of our development activities. Carnegie faces certain challenges in this regard because, unlike a university, we do not have a natural constituency—an alumni body—that can serve as the base for fund-raising. Moreover, Carnegie’s purpose—to advance basic science—may not have the widespread appeal that solving a pressing societal problem or curing a human disease may present. Carnegie-type science will yield paradigm-shifting advances that can open whole new means for addressing human problems, but such gains cannot be promised in connection with individual projects. Hence our appeal must be to a unique constituency with the means to provide significant support and the vision to value our work.

Carnegie has been effective in recent years in approaching foundations that support basic science. We now are also building a development capacity to establish enduring relationships with a broad group of individuals. This work has involved assembling a professional staff to provide the underpinnings for a comprehensive outreach effort and installing administrative systems to undertake broad appeals successfully. Such outside support can help us to pursue high-priority projects or to enhance the capacity of the endowment to provide enduring financial support.

Similarly, although the purpose of Carnegie science is not to achieve commercial gains, we do obtain patents on commercially promising intellectual property developed by our scientists. We are pursuing a prudent and careful approach in licensing our technology to enhance these revenues. Over the past few years, the annual revenues from patents have grown from $1.8 million to $2.3 million.²

²Major opportunities are being pursued in connection with our RNAi patent (approximately 50 licensees) and our synthetic diamond patent estate, with additional possibilities arising from certain recent work at Plant Biology (FRET technology).
Pursuing the various goals described here will require more resources than reasonably can be expected from our endowment. Nonetheless, I believe that the various means to supplement endowment support should enable us to achieve our goals.

Recognize special opportunities.

Carnegie must ensure a continuing capacity to respond to special opportunities or needs that have the potential to lead to major scientific breakthroughs or that are essential to the future of a department or the institution. Several examples are now before us:

- We live in a time of enormous scientific change arising from the convergence of astronomy, cosmology, and high-energy physics. Our astronomers view the proposed Giant Magellan Telescope (GMT) as an instrument that will allow examination of some of the fundamental mysteries of the universe. Significant efforts have been underway over several years to realize this opportunity without undue strain on Carnegie’s financial capacity.

- The Global Ecology department has been remarkably successful in its first years in advancing the science of climate change, providing the foundation for the development of policy, and enhancing public awareness of the importance of this issue. There is a need to expand the activities of this department significantly, and a focused campaign to “grow” the department is being launched.

- Many of our scientists depend on advanced computational resources. For example, scientists at Global Ecology use computer clusters to run complex global circulation models and analyze large data sets from remote sensing instruments; scientists at Plant Biology maintain a massive database of genetic information on *Arabidopsis* [a mustard plant that is a model organism for plant biologists], serving scientists around the globe; researchers at DTM run complicated computer models to understand the formation of planets; and investigators at the Geophysical Laboratory use sophisticated computers to model phenomena in materials under extreme conditions (pressure and temperature). The infrastructure to support these computing needs requires refurbishment.
Make focused contributions to science education.
The District of Columbia confronts huge problems in its schools, with the result that many of the city’s children are denied the opportunities that only a proper education can provide. In recognition of this need, Carnegie has contributed to its community by enhancing science education through the Carnegie Academy for Science Education (CASE). This program has been entrepreneurial in seeking support. Our Washington-based education staff is also working with colleagues in Baltimore to build a counterpart capability there. Our astronomers in Pasadena have established a mentorship program with nearby Pomona College. And now CASE is involved with some of our large federally funded projects because education and public outreach are now required components of proposals at most federal agencies.

Strengthen administrative operations.
With the involvement of several board members, we undertook a detailed evaluation of our business and administration systems, which resulted in sweeping recommendations for change and modernization. As part of this effort, Carnegie is installing new accounting and administrative software that will be operational by July 2008. Moreover, the business staff at headquarters has been significantly upgraded by new hires. This overall effort is very important and has had the benefit of continuing oversight by the Audit committee.

Increase the visibility of the Carnegie Institution.\(^3\)
The Carnegie Institution has been remarkably successful in advancing scientific knowledge, but is largely unknown outside the particular scientific communities in which we work. We are often confused with other Carnegie enterprises. Our name provides no indication of what we do, and the “of Washington” modifier is fundamentally confusing because four of our six departments are elsewhere. To improve our visibility, we are promoting a new logo—Carnegie Institution for Science—and have created a new and attractive website (see www.ciw.edu/). We are issuing frequent press releases in an effort to enhance public awareness of important advances by Carnegie scientists. Our Capital Science lectures often fill our auditorium at headquarters, and we now are planning periodic symposia in New York City and California. To reach out to local communities, the Observatories staff is sponsoring

\(^3\)This goal bears on our efforts to enhance development as well as to recruit top-notch staff and postdocs.
a lecture series at the nearby Huntington Library, and the Broad Branch Road departments have launched a lecture series at the handsome new auditorium in the Greenewalt Building. We believe that these activities help to create an understanding that reinforces the institution’s reputation to which our scientific work entitles us.

Plan to refurbish facilities.

Some of our buildings are growing old, and renovations are needed. We have successfully completed new building projects for Embryology and Global Ecology, and we have renovated our P Street headquarters, the Observatories’ building in Pasadena, and the Greenewalt Building at Broad Branch Road in recent years. Nonetheless, some of our other facilities need refurbishment, including other buildings at Broad Branch Road and at Plant Biology. Although funds are allocated each year for maintenance and upgrade of our buildings, further efforts will be required over the next decade to improve our aging properties.

Consider governance changes.

The Carnegie board plays a critical role in helping to chart the course of the institution. It is healthy to examine the effectiveness of our governance processes from time to time and to make changes as appropriate. This is a challenge that our board is confronting.

These goals provide the institution with an aggressive agenda for the coming years. The board and I believe that they build on our strengths and achievements and provide the foundation for significant scientific advances in the decades to come.
Friends, Honors & Transitions
The Barbara McClintock Society
An icon of Carnegie science, Barbara McClintock was a Carnegie plant biologist from 1943 until her retirement. She was a giant in the field of maize genetics and received the 1983 Nobel Prize in Physiology/Medicine for her work on patterns of genetic inheritance. She was the first woman to win an unshared Nobel Prize in this category. To sustain researchers like McClintock, annual contributions to the Carnegie Institution are essential. The McClintock Society thus recognizes generous individuals who contribute $10,000 or more in a fiscal year, making it possible to pursue the highly original research for which Carnegie is known.

$10,000 to $99,999
Anonymous (1)
Michael Brin
Linda Brown
Martin Gellert
Robert G. Goelert
William T. Golden
Robert Hazen
Paul N. Kokulis

$100,000 to $999,999
William K. Gayden
Michael E. Gellert
William R. Hearst III
Steven L. McKnight
Cary Queen

Gilbert V. Levin
Lawrence H. Linden
Brigitte L. Linz
Burton J. McMurtry
Jaylee M. Mead
Richard A. Meserve and Martha R. Meserve
Alvin E. Nashman
Deborah Rose, Ph.D.
Maxine F. Singer
Christopher T. S. Stone
William I. M. Turner, Jr.
Thomas N. Urban
Sidney J. Weinberg, Jr.
Cora Weiss
Other Annual Giving

Individuals

$1,000 to $9,999
Paul A. Armond
Henry H. Arnhold
Mary B. Bailey
Cheryl A. Bantz
Jordan Baruch
Daniel N. Belin
Diane Bernstein
Brigitte Berthelemon
Charles Bestor
Albert L. Brown
Anthony J. Cavalieri
John F. Crawford
Eleanor Dalton
Igor B. Dawid
John P. de Neufville
Bruce W. Ferguson
Christopher B. Field
Marilyn Fogel
William L. Friend
Mary K. Hartigan
William A. Haseltine
John W. Holaday
Charles B. Hunter
Jonathan Kaploff
G. G. Kowalczyk
Robert L. Kuhn
Eugene Larson
Johng K. Lim
John D. Macomber
Sheila McGough
Amy Meserve
Lauren Meserve
Catherine A. Piez
Frank Press
Vera C. Rubin
Robert C. Seamans
Leonard Searle
Christine D. Smith
Allan C. Spradling
Ian Thompson
Scott B. Tollesen
Frederick P. Woodson

Under $1,000
Jagannadhak Akella
Lloyd H. Allen
Joseph P. Ardiszi
Louis G. Arnold
Harry A. Bacas
Lawrence C. Baldwin
Alain Baronnet
Clifton J. Batson
Harvey E. Belkin
Peter M. Bell
Paul Bellaire
Jack Bennett
Alan B. Berk
Morris M. Birnbaum
Michael Borman
Kurt R. Borski
Alan Boss
Ray L. Bowers
A. S. Brager
Robin Brett
Charles L. Brister
Peter C. Brockett
Harold Brodsky
Deborah L. Brown
Jeanette S. Brown
Kenneth Brown
Steven M. Brown
Allan B. Burdick
Marjorie Burger
Bernard F. Burke
Donald M. Burt
Robert Cadmus
John A. Caldwell
Carol L. Carpenter
Timothy J. Carr
Dana Carroll
James F. Case
Asit Choudhuri
Mary Coder
Michael P. Cohen
Nelson R. Corby
Jose M. Correia Neves
Harvey W. Crist
John R. Cronin
Daniel L. Crotty
Martin Czigler
Babette S. Dalsheimer
Edward E. David
Douglas L. Davidson
John E. Davis
Vincent J. De Feo
John B. Denniston
Charles T. DeVaul
Robert C. DeVries
William S. Dickey
Richard V. Dietrich
John F. Dilley
John B. Doak
Bruce R. Doe
David Dombrowski
Pamela P. DuBois
George Duhiig
Janice S. Dunlap
Wallace G. Ernst
Ira B. Fader
John Farhood
Raul Fernandez
Theodore H. Finney
Dorothy R. Fischer
Frederick Forro
John Fournelle
Laurence W. Fredrick
Fred S. Fry
Gladys H. Fuller
Joseph H. Gainer
Esra Galun
David Gambrel
Barry Ganapol
Robert L. Gault
Domenico Geller
Mary H. Goldsmith
Paul E. Grayson
F. L. Greer
Irven Greif
Irene M. Grill
Norbert C. Grothaus
Ronald R. Gustafson
Necip Guven
William G. Hagar
Steven J. Hamilton
Richard S. Hartman
Karl M. Hartmann
Frederick H. Hauck
Gordon S. Hawkins
Norris C. Hekimian
Margot W. Heller
Jeffrey G. Herman
Donald L. Hersh
Sandra D. Hess
Vera Hewitt
Margaret A. Higbee
Ian T. Hill
Peggy Hill
Samuel K. Himmelrich
Anne M. Hofmeister
Wayne J. Hopkins
Satoshi Hoshina
Mary Hoyer
Larry D. Huffman
Edward Hurwitz
John Ingersoll
John H. Jacobs
Richard S. James
William N. Jeffer
John F. Johnson
Theodore J. Johnson
Cindy L. Jones
Peter G. Katona
Susan D. Kern
Marguerite J. Kingston
Joan Klein
Herman S. Kohlmeier
Linda Kontnier
William E. Kopka
Audrey S. Krause
Donald T. Kriek
Arlo U. Landolt
Arthur LaVelle
Samuel A. Lawrence
Jean Leeson
Lavonne Lela
Alan E. Levin
Kathleen D. Lewis
Steven L. Hernault
Joseph Q. Livingston
Thomas E. Lovejoy
Steven R. Majewski
W. R. Mancuso
Sidney Marantz
Chester B. Martin
Peter V. Mason
Kiyoto Matsuishi
James M. Mattinson

David Mauriello
Susan G. McIlwain
Neil R. McNamara
Rhonda McNulty
William E. Messenger
Anne D. Milch
Dennis F. Miller
Lee J. Miller
Mary Lee Morrison
David J. Mossman
Jack E. Myers
Phillip Newmark
Richard L. Nielsen
Peter J. Nind
Adrianne Noe
Edmundo O. Norabuena
Noboru Oba
Michael Ollinger
Lawrence C. Pakula
James T. Parkinson
R. B. Parry
Niels M. Pedersen
Patsy M. Perlman
Carlos Picone
Suzanne K. Podany
Fred F. Pollitz
Martha Powell
Truit R. Prosper
Daniel Pugh
Shirley Raps
Martin Ratliff
Donald G. Rea
Matthew S. Reiner
Philippe Reymond
Benjamin Richter
Carl R. Robbins
Lindsey C. Robertson
Daniel L. Robinson
Christopher Rubel
Doug Rumble
Phil Salomon
Anne K. Sawyer
Maarten Schmidt
Joyce R. Schwartz
Marianne Sekulow
Randolph Sim
Mary E. Simon
Virginia B. Sisson
Richard Heckert became the chairman of E. I. du Pont de Nemours & Company in 1986, the same year he became chairman of the Carnegie board of trustees. With a Ph.D. in organic chemistry, Heckert spent his entire career at DuPont. In 1980, after being introduced to the institution by his friend and colleague, Carnegie trustee Crawford H. Greenewalt, former president and chairman of DuPont, Heckert was elected to the Carnegie board.

Heckert appreciated Carnegie’s research accomplishments and traditions, but recognized the institution’s need to adapt to the changing world of science. Under his leadership, the board embarked on the first capital campaign in 1989. The goal was to revitalize the scientific infrastructure and programs. With his hands-on style and dedication to research, Heckert was enormously successful in this $50 million fund-raising effort. His tireless work helped the Magellan telescope project to succeed. Other initiatives that were part of the campaign included the establishment of the Barbara McClintock postdoctoral fellowships, the Vannevar Bush Scientific Leadership Chair for the president, and, in honor of his friend, the Crawford H. Greenewalt Chair for the director of the Observatories. Even after he stepped down as Carnegie chairman in 1992, he continued to lead the campaign to its successful completion in 1996.

Heckert remained an active trustee until 1997. In addition to his distinguished fund-raising efforts, Heckert has generously supported the institution over the years. He is a member of the Edwin Hubble Society, which honors individuals who contribute between $1 million and $10 million to Carnegie during their lives. The institution sincerely thanks Richard Heckert for his deep understanding of Carnegie science, his exemplary leadership, and his consistent support over the last three decades.
Tom Urban was chairman of Pioneer Hi-Bred—the leader in providing seeds to farmers worldwide—when he was elected to the Carnegie board in 1986. Urban took a particular interest in the Department of Plant Biology, serving on its visiting committee beginning in 1988. Although not a scientist, he was deeply interested in the institution’s research. This was especially evident after Urban was elected chairman of the Carnegie board in 1992, a position he held until 2004. Urban’s outlook embodies George Ellery Hale’s motto to “make no small plans.” He became a bold supporter of the Magellan telescope project and many other innovative Carnegie endeavors.

Urban was also a bold leader who understood the importance of the institution’s emphasis on independence and originality. By opening up board meetings to department directors and others, he encouraged expression of different perspectives. For Urban, lively discussion was vital to the institution’s continued success.

As chairman, Urban oversaw two important capital campaigns. The first—Carnegie Science for the City—raised $6.5 million to restore the headquarters building and support public education activities. The second—The Carnegie Campaign for Science—raised $60 million, which led to the creation of the first new department in over 80 years, the Department of Global Ecology; contributed to the construction of the Singer Building for the Department of Embryology; improved instrumentation; and bolstered postdoctoral fellowship funds, among other achievements. Leading by example, Urban issued a challenge to the board of trustees by pledging a large contribution of his own.

Over his years of service, Tom Urban has contributed generously to Carnegie science with his insight, inclusiveness, superior leadership, and gifts. He is a member of the Edwin Hubble Society. The institution is deeply grateful for Urban’s continued involvement and support.
Lifetime Giving Societies

The Carnegie Founders Society
Andrew Carnegie, the founder of the Carnegie Institution, established it with a gift of $10 million. Although he ultimately gave a total of $22 million to the institution, his initial $10 million gift represents a special level of giving. In acknowledgment of the significance of this initial contribution, individuals who support Carnegie’s scientific mission with lifetime contributions of $10 million or more are recognized as members of the Carnegie Founders Society.

Caryl P. Haskins*
William R. Hewlett*

The Edwin Hubble Society
The most famous astronomer of the 20th century, Edwin Hubble, joined the Carnegie Institution in 1919. Hubble’s observations shattered our old concept of the universe. He proved that the universe is made of collections of galaxies and is not just limited to our own Milky Way—and that it is expanding. This work redefined the science of cosmology. Science typically requires years of work before major discoveries like these can be made. The Edwin Hubble Society honors those whose lifetime support has enabled the institution to continue fostering such long-term, paradigm-changing research by recognizing those who have contributed between $1,000,000 and $9,999,999.

D. Euan Baird
Michael E. Gellert
Robert G. Goellet
William T. Golden*
William R. Hearst III
Richard E. Heckert
Kazuo Inamori
Burton J. McMurtry
Jaylee M. Mead
Cary Queen
Deborah Rose, Ph.D.
Thomas N. Urban
Sidney J. Weinberg, Jr.

The Vannevar Bush Society
Vannevar Bush, the renowned leader of American scientific research of his time, served as Carnegie’s president from 1939 to 1955. Bush believed in the power of private organizations and wrote in 1950, “It was Andrew Carnegie’s conviction that an institution which sought out the unusual scientist, and rendered it possible for him to create to the utmost, would be worth while [sic] . . .” He further said that “the scientists of the institution . . . seek to extend the horizons of man’s knowledge of his environment and of himself, in the conviction that it is good for man to know.” The Vannevar Bush Society recognizes individuals who have made lifetime contributions of between $100,000 and $999,999.

Anonymous (2)
Bruce Alberts
Daniel N. Belin
Brigitte Berthelot
Donald Brown
A. James Clark
Tom Cori
Jean W. Douglas
Bruce W. Ferguson
Stephen F. Fodor
William K. Gayden
Robert and Margaret Hazen
Antonia A. Johnson
Gerald D. Laubach
John D. Macomber
Steven L. McKnight
Alvin E. Nashman
Evelyn Stefansson Nef
Vera Rubin
William J. Rutter
Maxine F. Singer
Christopher T. S. Stone
William I. Turner

Second Century Society
The Carnegie Institution is now in its second century of supporting scientific research and discovery. The Second Century Society recognizes individuals who have remembered, or intend to remember, the Carnegie Institution in their estate plans and those who have supported the institution through other forms of planned giving.

Bradley F. Bennett
Eleanor Dalton
Nina V. Fedoroff
Marilyn Fogel
Kirsten H. Gildersleeve
Robert and Margaret Hazen
Paul N. Kokulis
Gilbert and Karen Levin
Evelyn Stefansson Nef
Allan R. Sandage
Leonard Searle
Maxine F. Singer
Hatim A. Tyabji

Members were qualified with gift records we believe to be accurate. If there are any questions, please call Mira Thompson at 202.939.1122.

*deceased
Honors

Trustee and astronomer Sandra Faber was awarded an honorary doctorate from the University of Chicago in October 2006 for her achievements on the nature of dark matter, the formation of galaxies and star populations, and early galactic evolution.

Secretary of the board Deborah Rose received the 2006 Yale Medal, the highest award of the Association of Yale Alumni, in recognition of her outstanding service to the university.

Carnegie trustee Steven McKnight was elected a fellow of the American Association for the Advancement of Science in 2006.

The National Academy of Sciences awarded Carnegie president emerita Maxine F. Singer the 2007 Public Welfare Medal, the academy’s most prestigious honor, for her inspired leadership in science and its application to education and public policy.

President of the Carnegie Institution, Richard A. Meserve, was elected to the Harvard Board of Overseers in June 2007.

Embryology

Staff member Joseph Gall received the 2006 Senior Award from Women in Cell Biology for his scientific achievements and his long-standing support for women in science. He also received the 2007 Louisa Gross Horwitz Prize, awarded annually by Columbia University to recognize outstanding contributions to basic research in the fields of biology and biochemistry. Gall shares the 2007 award.

Department director Allan Spradling was awarded an honorary doctorate from the University of Chicago in 2006. He received the M. C. Chang Award in 2007 for his pioneering accomplishments in developmental and reproductive biology and genetics. He was also elected president of the Genetics Society of America for 2007.

Geophysical Laboratory

Department director Wesley T. Huntress, Jr., received the American Astronautical Society’s 2006 William Randolph Lovelace II Award for his contributions to space science and technology.

The American Geophysical Union awarded Ho-kwang (Dave) Mao the 2007 Inge Lehmann Medal for “outstanding contributions to the understanding of the structure, composition, and dynamics of the Earth’s mantle and core.”

Observatories

Department director Wendy Freedman was elected a member of the American Philosophical Society in 2007.

Astronomer Mark Phillips shared the 2007 Cosmology Prize of the Peter and Patricia Gruber Foundation for his role in discovering that the universe is expanding at an accelerating rate.

Plant Biology

Winslow R. Briggs was awarded the 2007 Adolph E. Gude, Jr., Award, established by the American Society of Plant Biologists and first given in 1983. It is presented triennially to a scientist or lay person in recognition of outstanding service to the science of plant biology.

Staff member Shauna Somerville was elected a fellow of the American Association for the Advancement of Science in 2006.
Friends, Honors & Transitions

Sandra Faber
Deborah Rose
Steven McKnight
Maxine Singer
Richard Meserve

Joseph Gall
Allan Spradling
Wesley Huntress, Jr.
Ho-kwang (Dave) Mao
Wendy Freedman

Mark Phillips
Winslow Briggs
Shauna Somerville
Terrestrial Magnetism

Staff member Sara Seager was named by Popular Science magazine as one of its “Brilliant 10” in 2006.

Staff member Paul Silver was elected a fellow of the American Academy of Arts and Sciences in April 2007.

Senior Fellow Vera Rubin received the 2007 Award for Distinguished Achievement presented by Alumnae & Alumni of Vassar College.

Transitions

Department of Terrestrial Magnetism director emeritus George Wetherill died on July 19, 2006, at the age of 80.

Former chair of the Carnegie board of trustees Frank Stanton died on December 24, 2006, at the age of 98.

Remi Barbier was elected to the board of trustees in December 2006.

Michael Duffy and Mary-Claire King were elected to the board of trustees in May 2007.

Wesley T. Huntress, Jr., stepped down as director of the Geophysical Laboratory and was succeeded by staff member Russell J. Hemley on July 1, 2007.
Research Highlights
The Sticky Situation with Cohesion

Over and over again, every cell in an organism replaces itself by copying its genetic material and splitting into two new cells. Proper cell division ensures that the correct number of gene-carrying chromosomes is passed on and that cancer and developmental problems don’t arise. Chromosome segregation depends on a special “glue” for regulation. Recently, former graduate student Elçin Ünal, predoctoral fellow Jill Heidinger-Pauli, and staff member Doug Koshland discovered that this vital regulator works differently and more widely than scientists had thought. Their results challenge the current model of the process called cohesion, which is essential to cell division and DNA repair.

A cell has a four-phase life cycle: growth, synthesis, growth, and mitosis. During the synthesis phase, DNA inside the cell’s nucleus is duplicated and two identical daughter chromosomes called sister chromatids result. To maintain the integrity of the genes, these twins must remain connected until the exact moment of separation during mitosis. A protein called Eco1 triggers a complex of other proteins, called cohesin, to keep the sisters properly glued together. Before the Carnegie study, it was believed that the process of cohesion worked only during this synthesis phase. Using budding yeast, the team found that cohesins can establish attachments between sister chromatids independent of this phase.

The last step of the cell cycle is the brief but dynamic mitosis phase. The chromosomes condense and the nucleus breaks down. Fibrous structures called spindles form, cohesion is lost, and the sister chromatids detach. The spindles help the sisters move toward opposite ends of the cell, the spindles disappear, and two new cells form.
In addition to making sure that duplicated sister chromatids stay bound, cohesion helps determine which copy is which so that the sisters are correctly distributed into the two new cells. It is also called in to repair breaks in double-stranded DNA so that damaged ends do not cause defects. Prior to this research, it was thought that cohesin was limited to binding and fixing broken ends only. But the Carnegie scientists found that when one chromosome breaks, the Eco1 protein generates cohesion-dependent attachments between sister chromatids throughout the entire genome—on unbroken areas in addition to the site of the broken DNA. This is the first evidence suggesting that Eco1 and cohesins protect chromosomes across an entire genome.

How Stem Cells Know What to Become

Stem cells, those multipurpose precursors to other cell types, are routinely lauded for their potential to cure disease. Using intestinal stem cells (ISCs) of the adult fruit fly *Drosophila melanogaster*, former Carnegie fellow Benjamin Ohlstein and department director Allan Spradling have shown that these stem cells directly determine what type of cells their “daughter” cells should become. This research is the first to suggest that not only are these stem cells the source of new cells, but they could also be the tissue’s “brains,” dictating what type of new cell is needed at any given moment. The finding could transform our understanding of stem cells and potentially help fight some cancers.

Embryonic stem cells receive a lot of attention because they can become any cell in the body. Yet adult stem
Over and over again, every cell in an organism replaces itself by copying its genetic material and splitting into two new cells. Cells are versatile too. They remain throughout life and constantly replace other differentiated cells that are lost to age or disease.

The intestinal stem cells of the adult fruit fly communicate via a signaling pathway dubbed Notch. Notch is a well-known system that communicates the need to replenish one of two cell types in the fruit fly’s gut. Which type of cell a daughter will become appears to depend on a protein called Delta, which sits on the surface of the intestinal stem cell and activates the Notch pathway in the daughters.

Most daughters receive a strong Delta signal from the intestinal stem cell and become enterocytes—cells that line the inside of the gut and absorb nutrients. But when the Delta signal is weak, the daughters become hormone-generating enteroendocrine cells. For every 15 to 20 enterocytes created, one intestinal stem cell will also produce two enteroendocrine cells.

Ohlstein and Spradling tracked Delta, Notch, and several other related proteins using fluorescent marker molecules. They found that most ISCs have a lot of Delta and that Delta seems to control the types of new cells made; it also stops excessive cell division. When Delta or other Notch signaling genes were disabled, the daughter cells continued to divide, eventually producing tumors. The scientists hope that the distinctive ISC properties they found in fruit flies will help advance the study of mammalian intestinal stem cells.

Among the many Drosophila mid-gut cells (blue), only intestinal stem cells show the Delta protein (red), either at high (arrow) or low (arrowhead) levels. The strength or weakness of Delta dictates what type of gut cell the stem cell’s next daughter will become. The same stem cell can change its Delta levels in response to tissue needs.

(Image reprinted with permission from Science, vol. 315, pp. 988-992. Copyright 2007 American Association for the Advancement of Science.)
High-Pressure Observatories on New Worlds of Matter

Advanced observatories open our eyes to unknown worlds. For two decades, the Geophysical Laboratory (GL) has operated unique high-pressure observatories at synchrotron facilities such as the National Synchrotron Light Source (NSLS) in New York and the Advanced Photon Source (APS) in Illinois. Dedicated programs such as the High Pressure Collaborative Access Team (HPCAT) beamline observatory at the APS and the newly launched High Pressure Synergetic Center (HPSynC) led by Ho-kwang (Dave) Mao and Russell Hemley have yielded streams of discoveries in the vast new worlds of compressed matter.

At each level of compression, properties of ordinary materials are drastically altered. Fascinating new physics and chemistry prevail. Unleashing the power of high pressure, NSLS, HPCAT, and HPSynC allow scientists to tackle a range of grand challenges, from producing metallic hydrogen at low temperatures to understanding the mystery of the Earth’s inner core. Tuning the pressure variable should advance our understanding of the electronic structure of materials and establish new chemical rules across the periodic table, leading to breakthroughs in mineralogy, geophysics, geochemistry, and bioscience, and to applications such as hydrogen storage, nuclear science and energy, and superhard materials.

Recently Mao and Hemley’s team found that, at high pressure and under synchrotron X-ray irradiation, water molecules in ice break down into O₂ and H₂ molecules, forming a distinct crystalline phase. It is surprisingly stable and has implications for hydrogen fuel production.

High-pressure studies using the mega-bar diamond anvil cell developed at the Geophysical Laboratory can attain pressures equivalent to those at center of the Earth (3.6 million times atmospheric pressure). This technology has opened many avenues of research in the study of planetary interiors and novel materials.

(Image courtesy Russell Hemley.)
GL researchers also discovered that a cerium-rich metallic glass under pressure undergoes a transition that dramatically increases its density while it still remains a glass. Metallic glasses offer the potential for new materials with high strength and other useful properties, and this finding that they can exist in more than one state may lead to new, technologically useful alloys that are compositionally identical but have different properties.

The researchers also discovered that, at 600,000 times atmospheric pressure, the element vanadium undergoes a unique phase transition that involves a change in bonding but no change in density. The basis of this transition has yet to be explained but may relate to high-pressure vanadium’s record-high superconducting temperature.

Experiments conducted at pressures approaching those at the Earth’s outer core determined that crystals of post-perovskite, a mineral abundant there, deform more readily in some directions than others. The results can help test hypotheses regarding the enigmatic behavior of seismic waves near the core/mantle boundary.
Melts, Glasses, and Fluids in the Deep Earth

Roiling cauldrons of liquid-laden material flow within Earth's rocky interior. Understanding how this matter moves and changes is essential to deciphering Earth's formation and evolution as well as the processes that create seismic activity, such as earthquakes and volcanoes. Bjørn Mysen probes this hidden environment in the laboratory and, based on his results, develops new models that help explain the nature of this molten material and what goes on in this remote realm.

Mysen investigates changes in the atomic properties of molten silicates at high pressures and temperatures. Silicates comprise most of the Earth's crust and mantle. He uses devices, such as the diamond anvil cell, to subject melts and fluids that form silicate rocks to the conditions of the deep Earth. He uses spectroscopic technology to witness physical transformations.

The transport processes that shape the interiors of all the terrestrial planets are governed by the physical and chemical properties of silicate melts, the dominant part of magma, and certain associated water-rich fluids. Magma is formed by the partial melting of crystalline minerals. The water-rich fluids are extracted from water-laden (hydrous) minerals under high-temperature and pressure conditions. This melting and dehydration happen between 1,100°F and 2,900°F and at depths from several miles to hundreds of miles. At these depths, pressures range from about 2,000 to 100,000 times atmospheric pressure.

These melts and fluids are the principal agents for material and energy transfer within the Earth. Their viscosity and density contrast with those of surrounding crystalline materials, enabling them to travel through the crystalline matrix. The most important properties for understanding material movement are viscosity and the thermodynamics involved in material/energy exchange during melting, crystallization, hydration, and dehydration.

Mysen is currently developing structure-based property models to derive, for example, how the atomic-level structural configurations of melts and fluids—and the lower temperature glasses made from these materials—can be translated to thermodynamic information. He uses these data, in turn, to compute the necessary physical and chemical properties that characterize how magma and water-rich fluids shape our planet—the core, mantle, and crust, as well as the hydrosphere, atmosphere, and biosphere.
To create models that accurately reflect how high-temperature and-pressure conditions affect silicate melts and water-rich fluids in the deep Earth, Mysen conducts experiments and then uses the data to help construct models. This graph compares results from model calculations with those from experiments. It shows how the water content of magma controls its ability to retain heat (thermal energy). This information is used to model how water content affects material and energy transport properties of magma and fluids in the Earth’s interior.

(Images courtesy Bjørn Mysen.)

The chemical building blocks of life, such as amino acids, lipids and other biomolecules, may have formed in several plausible environments on the primitive Earth, such as hydrothermal springs (below left). A more difficult question is how these compounds became concentrated from the dilute prebiotic soup. Mineral grains in the sediment such as chalcopyrite (below middle) and gypsum (right) may have acted as filters to bring together life’s key ingredients.

(Images courtesy the USGS and Jim Cleaves.)
Primordial Percolations

Ever since Darwin, a key question in biology has been how life began. Darwin speculated that it might have happened in a “warm little pond” containing a broth of just the right ingredients. Research has come a long way since then, and the processes on the ancient Earth that could have formed the building blocks of life—amino acids, lipids, and other biomolecules—are relatively well understood. But generating these diverse compounds is only the first step. The primordial seas may have been awash with biomolecules, but only a fraction would have played a role in the emergence of life. How did the right molecules in this dilute soup become concentrated enough to get the evolutionary ball rolling? Staff scientist Robert Hazen and postdoctoral fellow Jim Cleaves think that the process of “geochromatography” may have played a role.

Chromatography is a laboratory technique used by scientists to separate different molecular species in a mixture. Molecules with different properties percolate through a specially prepared solid medium at different rates, segregating into distinct bands. Geochromatography is a natural equivalent of this process, in which the solid medium consists of mineral grains in rocks and sediments. Previous experiments have shown that the surfaces of minerals can concentrate certain organic compounds and even act like enzymes, bringing molecules together in specific ways. Perhaps it was when the water from Darwin’s pond seeped into the sediment beneath that the complex chemistry of life began to take shape.

The most likely minerals to have interacted with primordial biomolecules are silicates, such as the feldspars, quartz, and clay minerals, which make up the bulk of the Earth’s crust, and other rock-forming minerals such as calcite and pyrite. Hazen and Cleaves found in laboratory experiments that organic-bearing solutions flowing through powdered samples of these minerals produce bands comparable to those seen in standard chromatography. These natural materials, which would have been abundant on the early Earth, therefore have the capacity to segregate and concentrate the organic molecules from a dilute and heterogeneous mixture. More work needs to be done to see what types of compounds are segregated and how conditions like temperature and acidity affect the process. But geochromatography is a promising solution to one of the knottier puzzles in understanding the origin of life. □
Planting Trees Can’t Substitute for Clean Energy

What could be more environmentally friendly than a tree? Trees are not just aesthetically appealing; they also provide habitats for innumerable plant and animal species. And in these times of dangerously high emissions of carbon into the atmosphere, the ability of trees to absorb and store carbon might make them appear to be the planet’s salvation. Indeed, planting trees has been touted by many as an important strategy for mitigating greenhouse-induced climate change.

But trees don’t absorb just carbon dioxide from the atmosphere; they also absorb solar energy, some of which they reradiate as heat. How much? And how do the warming and cooling effects balance out? Should we be planting or chopping trees? It’s a complex problem and, like most questions regarding the global climate system, requires rigorous scientific analysis.

Global Ecology’s Ken Caldeira and colleagues used sophisticated climate and carbon cycle models to compare the impacts of forested and deforested landscapes on global temperature. The models took into account both carbon cycle effects mediated by changes in atmospheric CO₂ and biophysical effects, such as moisture release and light absorption by vegetation.

The researchers found that trees are not climate cure-alls. The computer simulations indicate that trees in tropical forests live up to their reputation as climate coolers. They absorb large quantities of carbon and release lots of moisture, which in turn generates cooling cloud cover. But the simulations indicate that farther from the equator the equation adds up differently. During spring, when open ground at high latitudes can be covered by white, light-reflecting snow, dark-colored forests absorb solar energy. Forests therefore exert a warming influence, and this more than cancels out the cooling effects from carbon absorption and moisture release during the growing season.

Caldeira points out that forests are valuable even if they do not help keep the planet cool. Their benefits include natural habitat for many plants and animals, recreational opportunities for people, and sustainably harvested wood. “But the notion that we can save the planet just by planting trees is a dangerous illusion,” wrote Caldeira in a New York Times op-ed piece. The key to preventing climate change, he emphasizes, is reducing greenhouse gas emissions from coal, oil, and gas. And solutions to this problem don’t grow on trees.
Diagnosing Earth’s Health from the Air

An new suite of instruments aboard fixed-wing aircraft is taking Earth’s vital statistics like never before. Greg Asner and team developed and now use the Carnegie Airborne Observatory (CAO) to see how our planet’s ecology is faring. With its bird’s-eye view, the CAO uses a waveform LiDAR (light detection and ranging) system that maps the three-dimensional structure of vegetation and combines it with advanced spectroscopic imaging, which shows the biochemistry of an area by analyzing different wavelengths of reflected light. The one-of-a-kind CAO is an unstoppable workhorse that produces stunningly beautiful 3-D maps of Earth’s biochemistry from the treetops to the forest floors.

The airborne observatory flies in two modes. The Alpha system, launched January 15, 2007, can map nearly 50,000 acres per day and has a resolution of 0.3-1.0 meters. Within days of its maiden flight, Alpha mapped one of the most remote rain forests in Hawaii, revealing the extent of native and invasive species—invasives are a huge threat to the state’s ecology. The data also yielded the 3-D architecture and carbon storage of every tree in the forest.

Later that same month, Carnegie and the Jet Propulsion Laboratory combined forces for the first flight of the CAO Beta system. The Beta system can fly larger regions with a more complete sampling of spectra at 2-4 meters spatial resolution, substituting AVIRIS (a NASA spectrometer) for the finer-spatial-resolution but less-sensitive spectrometer of the CAO Alpha. Its first assignment was to map dead vegetation that causes fires throughout Hawaii Volcanoes National Park. The team determined new ways to detect areas prone to fire and to predict the likely rate of a fire’s spread.

Computer simulations show that removing high-latitude forests (top) would cause global cooling (blue color), especially in the Northern Hemisphere where most of these forests are located. In contrast, deforestation of the tropics (bottom) would cause temperatures to rise (red), primarily because of effects on the carbon cycle.

(Image reprinted with permission from the Proceedings of the National Academy of Sciences, vol. 104, pp. 6550-6555. Copyright 2007.)
Global Ecology, Continued

Members of the CAO group pose with their aircraft and core collaborators from the U.S. Forest Service.
(Image courtesy Paul Gardner.)

Part of the Carnegie Airborne Observatory (CAO) team make their maiden flight with the CAO Beta system. From left to right are JPL’s Michael Eastwood, Carnegie team leader Greg Asner, and senior CAO team members Ty Kennedy-Bowdoin and David Knapp.
(Image courtesy Greg Asner.)
As the year progressed, the CAO Alpha and Beta systems were used in tandem to locate invasive species throughout Hawaii’s Big Island and to determine the impacts of the invaders on Hawaii’s last remaining rain forests.

Last summer and closer to home, the team mapped San Pablo Bay, Santa Cruz Island, and the Jasper Ridge Biological Preserve at Stanford University. That mission uncovered a huge range of ecological processes, topographic features that affect erosion and plant communities, invasive species in land and aquatic environments, locations of fire fuels, and carbon storage in terrestrial ecosystems.

The image, below left, shows the growth rates of tree species bordering a rain forest reserve on Hawaii’s Big Island. Redder colors represent faster growth rates. The red and pink colors are highly invasive trees of various species that are encroaching on the rain forest reserve boundary and the bumps are treetops. The reserve has old-growth trees with slow growth rates (in green). The invasion is coming from species in an area of managed land (former cattle pasture to the lower left).

(Image courtesy Greg Asner.)

The image, below right, shows an area with all non-native species. Some are very large trees (upper portion of the image), while others are agricultural and other non-native species of shrubs and fruit trees. All have relatively high growth rates (pinks to reds).

(Image courtesy Greg Asner.)
Exposing the Building Blocks of Galaxy Formation

The farther astronomers look into space, the farther they see back in time, thus tracing the evolution of the universe. It is generally believed that the universe in its infancy was filled with a thin, almost homogeneous gas. A popular theory of galaxy formation, the “hierarchical picture,” predicts that the gas accreted, forming smaller objects, which then collided and merged to become the massive objects seen today.

This theory recently got a boost when staff astronomer Michael Rauch, postdoctoral fellow George Becker, and colleagues undertook an ultradeep search—using the European Southern Observatory’s Very Large Telescope—for intergalactic gas and galaxies when the universe was only 15% of its present age. This survey was the most sensitive one ever undertaken for such distant galaxies. The researchers found a new population of faint protogalaxies—the likely building blocks of today’s galaxies, such as our Milky Way.

During the 1990s, there was mounting evidence in favor of the hierarchical picture of galactic evolution. This picture was supported by the work of Rauch and collaborators who measured distant quasars to show how the properties of cosmic gas clouds—the reservoir of matter for galaxy formation—fit within that scheme. Most of those gas clouds are dark and are visible only as foreground objects casting a “shadow” against a bright background quasar. Intriguingly, one class of these shadows—so-called damped Lyman-alpha systems—was suspected to arise when small, protogalactic building blocks
intersect the line of sight to the quasar. For many years, this was the only hint of the existence of numerous early galaxies, but until now, this possibility could not be tested because their low masses and tiny stellar populations made these protogalaxies exceedingly faint.

Rauch and his team recently tried to measure a faint intergalactic gas signal caused by the cosmic ultraviolet background radiation. But instead they found that their unprecedented 93-hour-long exposure showed dozens of faint, discrete objects emitting radiation from neutral hydrogen in the so-called Lyman-alpha line—properties predicted for protogalaxies.

The measurements imply low star formation rates and thus the immature chemical enrichment of young galaxies. The objects are about 20 times more common than all the distant galaxies previously seen from ground-based surveys—a finding consistent with the properties of the puzzling damped Lyman-alpha shadows and with the abundance of early low mass protogalaxies in the hierarchical picture.

Hydrogen atoms in distant galaxies and in the intergalactic medium absorb or release photons of light at specific wavelengths, producing characteristic absorption or emission lines when the light is dispersed into a spectrum. These are spectra of protogalaxies seen when the universe was at 15% of its present age (left). They show the Lyman-alpha emission line region characteristic of a population of low mass, weakly star-forming galaxies likely to be the building blocks of bright present-day galaxies. Michael Rauch, George Becker, and colleagues found these objects, which are about 10 times fainter than any galaxies previously seen in ground-based observations.

Tidal tails (top) betray the recent merger of two spiral galaxies in the little-known remnant galaxy NGC 34, imaged with the du Pont telescope at Carnegie’s Las Campanas Observatory. The Hubble Space Telescope reveals young star clusters and a new stellar disk sparkling at the center of the remnant (bottom). See page 38.

(Image courtesy François Schweizer and NASA.)
Our universe harbors billions of galaxies, with gas, mysterious dark matter, and millions to billions of stars each.

Scrutinizing Galaxy Assembly

Our universe harbors billions of galaxies, with gas, mysterious dark matter, and millions to billions of stars each. François Schweizer and colleagues study the galactic assembly process by observing nearby galaxies, focusing on how collisions and mergers reshape, grow, and evolve them. How this process happens is a central question in astrophysics today, and, for the first time, these astronomers have established a detailed (albeit tentative) sequence of events that occurs during the brief but intense merger period.

When spiral galaxies collide and merge, the rarefied gas between their stars is compressed, clumps into dense clouds and fuels an explosive birth of billions of stars and thousands of new star clusters. The phenomena that accompany these spectacular “starbursts” can be studied in the nearby universe, yielding valuable clues about galactic assembly in the distant, young universe.

Images taken with the Hubble Space Telescope and follow-up measurements from ground-based telescopes have shown that most of the turmoil during galaxy mergers lasts less than one billion years. Afterward, the restructured remnant galaxies, with their freshly minted stars and clusters, evolve more leisurely.

By studying a little-known merger remnant called NGC 34, Schweizer and colleague Patrick Seitzer, of the University of Michigan, worked out some first details. Two faint tails of tidal debris suggest the merger involved two spiral galaxies, one probably two to three times more massive than the other. Their collision likely started about 600 million years ago, when a widespread starburst lasting to about 100 million years ago began. Although the old disks of the two merging galaxies were jumbled, the remnant galaxy sports—surprisingly—a brand-new, less-than-400-million-year-old stellar disk. This disk apparently formed from gas pooled in the aftermath of the merger. Finally, a powerful gas wind, discovered fortuitously from absorption lines of sodium, began blowing from the central region. Reaching speeds of up to 1,050 kilometers per second (652 mps), the wind is likely driven by a highly obscured remnant central starburst, as well as a feeding frenzy of a nuclear black hole.

Although this detailed sequence is still tentative, Schweizer predicts that in less than a billion years, NGC 34 will come to resemble the well-known Sombrero galaxy. □
Observatories astronomer François Schweizer (above) stands atop Cerro Las Campanas, with the domes of the twin Magellan telescopes in the background. A rare cloudy day allowed Schweizer and collaborator Patrick Seitzer the leisure to hike to the top.

(Image courtesy Patrick Seitzer.)

Schweizer thinks that NGC 34 could evolve into a galaxy similar to the Sombrero (left), a nearby spiral galaxy sporting a disk of gas, dust, and young stars within a spheroid of old stars and clusters.

(Image courtesy Space Telescope Science Institute and NASA.)
It Takes a Group to Transport Nutrients

All cells are enclosed by a membrane that keeps important building blocks in and unwanted chemicals out. Embedded in the membrane are little machines, called transporters, which allow only certain molecules to pass. Carnegie fellow Dominique Loqué, research associate Sylvie Lalonde, fellow Loren Looger, and staff member Wolf Frommer have discovered a novel way in which these transporters work: neighbors must close their gates in synch. This mechanism was found for the transporter that takes up the essential nutrient ammonium. Frommer’s group speculates that similar mechanisms are used by other transporters. Since bacteria, fungi, and humans use similar proteins, the feature probably evolved more than a billion years ago. The discovery could help in understanding human kidney disease and may be important for engineering better crops.

Plants import nitrogen in the form of ammonium from the soil. However, if too much ammonium is accumulated, toxicity results. In earlier research, the Carnegie scientists, with colleagues, were the first to identify the genes responsible for ammonium uptake. In this study, the investigators looked at how ammonium transport is regulated. They found that the end portion, or so-called C-terminus, of the protein Arabidopsis ammonium transporter (AMT1;1), located just below the surface of the cell membrane, acts as a switch. This arm-like feature grabs a neighboring molecule, binder with it, and changes the shape of itself and its neighbor to activate all the pores in the complex. Without this stimulus, the pores can’t function. The researchers were surprised that a group effort is required, because each pore is capable of transporting nutrients by itself.

The rapid chain reaction among the different pores allows the system to shut down quickly—an advantage in surviving a toxic, ammonia-rich environment such as that encountered in Earth’s early history or when an animal is marking its territory. And the system “memorizes” previous exposures to ammonium, which helps it determine when the toxicity has abated.

The scientists tried to find out what triggers the rapid shutoff. Their findings suggest it occurs by a regulatory event called phosphorylation, in which a phosphate molecule is introduced to another molecule, changing the latter and preparing it for a chemical reaction. They are now investigating how ammonium or other signals control the ON and OFF states of the transporter valve complex.
Plant Genes Bridge the Generation Gap

For all their outward serenity, plants are full of surprises—especially when it comes to reproduction. All plants have two alternating life-cycle phases: the sporophyte and the gametophyte. In some lower plants, both phases have the same form. However, in flowering plants, the gametophytes consist of just a few cells (for example, each pollen grain is one male gametophyte), while the sporophytes are the large trees, bushes, and flowers we recognize. How did this system evolve? Are there distinct sets of genes that control development of each phase, or do both phases utilize the same genetic toolbox? Matthew Evans has identified the maize indeterminate gametophyte1 gene—\textit{ig1} for short—and determined that it controls development of both phases of the life cycle.

Previous genetic analysis had shown that \textit{ig1} controls female gametophyte development. Normally, the female gametophyte, called the embryo sac, consists of just a few cells, one of which ultimately becomes the egg cell. But the embryo sacs of \textit{ig1} mutants are crammed with extra cells, including egg cells. These are often fertilized abnormally, yielding embryos carrying genes from the sperm only. This property enables plant breeders to introduce the nucleus of any desirable maize variety into the cytoplasm of an \textit{ig1} egg cell to accelerate breeding.

Evans identified the \textit{ig1} gene by comparing the rice and maize chromosome maps and, surprisingly, found that \textit{ig1} also affects development of sporophyte plants. He discovered \textit{ig1} RNA, a sign of gene activity, in young leaves and in embryo sacs, and in both it showed a similar pattern of distribution. The \textit{ig1} gene also inhibits cell division in the leaf, just as it does in the embryo sac. The similarity between the role of \textit{ig1} in the sporophyte and female gametophyte raises the possibility that it is an ancient gene held over from an earlier stage of evolution when sporophytes and gametophytes led separate lives. More work on the \textit{ig1} gene’s action in maize combined with similar studies in lower plants will yield exciting new insights into important features relevant for plant evolution.
Plant-Like Light Sensing Found Key to Bacterial Virulence

Researchers have detected that bacteria measure light using a light sensor found first in plants. Surprisingly, scientists recently found that disease-causing bacteria need light to do their dirty work—a finding with potentially profound implications for medical treatments. Former postdoctoral researcher Trevor Swartz, director emeritus Winslow Briggs, research associate Tong-Seung Tseng, Gaston Paris of the Leloir Institute in Argentina, and other international team members are the first to study the function of plant-like, light-sensing molecules in bacteria. Their results suggest an entirely new model for bacterial virulence.

Plants developed a suite of light sensors that measure how much and which color light arrives at an individual leaf. Director emeritus Winslow Briggs was the first to identify the family of blue-light receptors that controls myriad of actions, including growth direction, leaf orientation, and chloroplast positioning. The receptors, called phototropins, use so-called LOV domains to bind the
blue-light-absorbing molecule named flavin. A LOV domain detects Light, Oxygen, or Voltage. The team was very surprised to find similar sensing domains in bacteria, which are usually thought to grow no matter whether in light or dark.

One variety of bacteria, Brucella, causes abortion of calves in cattle; it is known as Bangs disease and also causes illness in humans. Brucella has been studied extensively—one of the key reasons to pasteurize milk is to prevent infection by Brucella.

Many bacteria have signaling proteins involved in a cell’s response to stimuli that are similar to light-sensing proteins in higher plants. The sensors in the bacteria are closely related to phototropins. LOV-domain proteins have been found in more than 100 different bacteria. The researchers looked at four species. When they disabled the LOV gene in B. abortus, its virulence—the ability to reproduce enough to cause disease—dropped to less than 10% of that of normal bacteria. In another simple experiment, the team found a similar drop in virulence, indicating that B. abortus depends on sunlight to wreak havoc.

The researchers discovered that bacterial LOV domains activate a common signaling pathway that begins with a class of proteins called histidine kinase, which transmit signals for the cell to adapt to changing environmental conditions, such as nutrients or toxic substances. This work is the first ever to demonstrate a light-activated histidine kinase in a bacterium and show that it plays an essential role in its virulence. □

This fluorescence micrograph shows Brucella abortus bacteria (green) replicating in an immune-system cell. (Image courtesy Jean Celli, NIH.)

Researchers Tong-Seung Tseng (left), Winslow Briggs (middle), Trevor Swartz (right), and their international team are the first to study the function of plant-like, light-sensing molecules in bacteria. (Image courtesy In-Seob Han.)
A Shocking Start for the Solar System

Astronomers hypothesize that during its birth from a rotating cloud of gas and dust, our Solar System may have needed an extra kick from a nearby stellar explosion. The gravitational collapse of an isolated presolar cloud cannot account for some details of the isotopic composition of the Solar System. Staff member Alan Boss is using sophisticated computer models to understand our Solar System’s origins.

Studies of primitive meteorites have shown that the Solar System formed from a disk of gas and dust laced with iron-60 (60Fe) and aluminum-26 (26Al) atoms. These unstable isotopes, with half-lives of 1.5 and 0.7 million years, respectively, were created in the belly of a massive star that exploded as a supernova, spewing the newly formed isotopes out into the wake of its expanding shock front. To explain how these short-lived isotopes could have been incorporated into meteorites, astronomers have proposed that the supernova shock wave may have smacked into a dense cloud of gas and dust, injecting some of the isotopes into the cloud and triggering it to collapse due to its own gravity. As the Solar System formed from the collapsing cloud, a fraction of the isotopes would be included in meteorites.

While this hypothesis has been around for three decades, it was only in 1995 that Boss published the first detailed models of how the shock front could simultaneously trigger collapse and inject isotopes into the cloud. To achieve the high-resolution models needed for this study, Boss and his colleagues are now using the “FLASH” state-of-the-art hydrodynamics code developed at the University of Chicago. FLASH uses a procedure called adaptive mesh refinement, which allows the code to automatically increase its spatial resolution in regions where it is necessary, such as shock fronts, and to decrease the resolution where it is not. FLASH thus provides a much higher-resolution picture of how the triggered injection process works than was possible with the codes Boss used in the past. These higher-resolution calculations reveal details of the collapse and injection process on much smaller scales than the previous work, perhaps allowing the injection fingers to be followed down to the scale of the Solar System itself.

Cross sections show the simulated presolar cloud at the moment a supernova shock front first impacts the cloud (left image), and about 0.1 million years later (right image), when the shock front is beginning to compress the cloud to the point it collapses to form the Solar System. The initially spherical cloud is assumed to be symmetric about the left-hand border of the image. (Images courtesy Alan Boss.)
Did a Rogue Planet Cause a Lunar Cataclysm?

Unlike the Earth, whose face is constantly being remodeled by erosion and plate tectonics, the Moon bears the scars of its earliest history. And one episode of that history may have important implications for the evolution of the Solar System. It is the so-called Late Heavy Bombardment—an interval of about 100 million years, beginning about 3.9 billion years ago, during which the Moon suffered a series of cataclysmic impacts. The results are still visible in the form of about 45 large impact basins on the lunar surface, but the cause of the bombardment has puzzled scientists for 35 years. Why was there a sudden spike in impacts 600 million years after

The Moon’s large, dark basins, known as maria or “seas,” were formed by huge impacts early in the Solar System’s history. These impacts may have been triggered by the unstable orbit of a former planet, Planet V, which hurled asteroids toward the inner planets before plunging into the Sun or escaping the Solar System. (Image courtesy NASA.)
the formation of the Solar System, when the system should have already “cleaned up” any large, orbit-crossing debris?

Staff member John Chambers has suggested that the trigger for this event was a long-lost, fifth rocky planet, which he has dubbed Planet V, formerly occupying an orbit somewhere between Mars and the asteroid belt. Gravitational tugs from Jupiter and other planets could have destabilized Planet V’s orbit early in the Solar System’s history, causing it to pass through the asteroid belt and hurl asteroids toward the inner planets. Eventually Planet V would have been lost, either by plunging into the Sun or escaping the Solar System entirely, and the hail of asteroids would have ceased.

No trace of Planet V remains, of course, but Chambers was able to test the plausibility of this scenario by modeling the orbital dynamics of the Solar System with Planet V added. He found that, depending on its mass, Planet V might survive hundreds of millions of years barely disturbing the Solar System or instead might quickly wreak wide havoc, jostling the other planets to the point that Mars and Mercury would be lost. In simulations where Planet V had a mass between 10% and 25% that of Mars, the results played out in a way roughly consistent with the early bombardment scenario, especially if the initial orbits of Mars and the other surviving planets were not assumed to be the same as today. While these results can’t confirm the former existence of Planet V, they indicate that the hypothesis remains a viable explanation for this puzzling episode of the Solar System’s history.
It’s California’s Fault

The 2004 Sumatra-Andaman earthquake captured the world’s attention by triggering tsunamis that killed more than 200,000 people. With a magnitude of 9.1, the earthquake had worldwide effects, some of which are still being discerned by seismologists. Staff member Paul Silver and C. V. Starr Fellow Taka’aki Taira have found evidence that the Sumatra-Andaman earthquake may have temporarily weakened North America’s most famous earthquake zone—the San Andreas Fault—possibly raising odds of a seismic event. The results take seismologists a step closer to understanding how earthquakes can be predicted.

A leading hypothesis for earthquake prediction is that, immediately preceding an event, fault zones undergo either an increase in stress or a decrease in strength. But such changes require monitoring these variables at the depths in the Earth where earthquakes occur.

For 20 years seismologists have intensively studied a stretch of the San Andreas Fault near Parkfield in central California, using an array of borehole seismometers and other instruments that record all tremors and any creep along the fault. Seismograms of numerous small, repeating earthquakes have revealed that fluid-filled fractures whose seismic properties change with stress are found within the fault zone at a depth of about five kilometers. From changes in the seismograms, the researchers were able to track changes in stress on the fault.

Silver and Taira found such changes on three separate occasions from 1987 to 2007. The first was produced by a slow earthquake in 1993 (work with former postdoc Fenglin Niu), and the second by the magnitude 6 Parkfield earthquake in September 2004. But the third, in late 2004, appeared unrelated to any local disturbance.

It instead closely matched the timing of the December 26 Sumatra-Andaman earthquake. It was followed by an abrupt increase in the frequency of small, local earthquakes. Silver and Taira attribute the heightened earthquake activity to weakening of the fault. While the frequency of quakes increased, the size of the events decreased—a classic indicator of a weakened fault.

How did seismic waves from a distant quake cause this change? The most likely explanation is that the stress changes from the passing waves redistributed fluids within the fault zone. This served to lubricate fault surfaces, weakening resistance to movement. Whatever the mechanism, Silver and Taira have shown that it is possible to monitor stress and strength at depth on earthquake-producing faults, which is good news for earthquake prediction.
Fingerprinting and DNA analyses are not just the stuff of TV-programming successes. The six-week Summer Biotechnology Work Experience program of the Carnegie Academy for Science Education (CASE) introduces high school students and teachers to cutting-edge biotechnology techniques and workplace training with a unique forensics curriculum laying the foundation for real-world careers. This year some participants used their skills as interns in area labs.

In 2006 CASE was awarded a three-year grant by the Division of Undergraduate Education of the National Science Foundation to support DC Biotech: Improving Opportunities for Urban Minority Students. The program has a dual role: to bolster students’ career opportunities while improving biotech workforce diversity, and teaching teachers about this important career path. CASE is the lead partner working with the Washington, D.C., Public Schools Office of Career and Technical Education, Montgomery College, McKinley Technology High School, Ballou Senior High School, and a biotech advisory committee composed of industry, research, and academic institutions.

The grassroots effort is broadening its reach. This past year, five DC Biotech students and two teachers had internships in area labs. One teacher and student worked together in the Howard University lab of Georgia Dunston, the founding director of the National Human Genome Center. They looked at the genetic aspects of asthma among African-Americans. The disease is four to six times more prevalent in this group than among Caucasians.

During the summer, 22 students from McKinley and Ballou became immersed in the six-week forensics program instructed by Julie Edmonds and Shaina Byrnes, a student from George Washington University’s Master of Forensic Sciences program. At the end of each week, students independently analyzed a simulated crime scene—complete with hair samples, fingerprints, and DNA residue—using the techniques they had learned. They then argued their cases in mock trials. Meanwhile, Toby Horn rigorously prepared DC Biotech teachers for the school year ahead.

First Light, the CASE Saturday science school for middle school students, continues to blossom with laboratory investigations and field trips related to astrobiology...
study of the origin of life on Earth and of life’s potential for existing elsewhere. Among their many activities, the students, under the instruction of mentor and teacher Guy Brandenburg, built four 6-inch telescopes and one 4½-inch telescope to learn about the night skies and the technology behind viewing the heavens. □

A DC Biotech student (above left) explains her crime scene analysis to visitors at the summer forensics open house.

DC Biotech students (top right) dust for fingerprints as part of their “CSI” curriculum. They learn real-life science techniques that provide the foundation for careers in biotechnology.

(Bottom right) George Washington University’s Ted Robinson shows summer forensics students how infrared analysis is used to analyze handwriting evidence.

(Images courtesy Toby Horn.)
Reader’s Note: In this section, we present summary financial information that is unaudited. Each year the Carnegie Institution, through the Audit Committee of its Board of Trustees, engages an independent auditor to express an opinion about the financial statements and the financial position of the institution. The complete audited financial statements are made available on the institution’s website at www.ciw.edu.

The Carnegie Institution of Washington completed fiscal year 2007 in strong financial condition due to the excellent returns of the diversified investments within its endowment; a disciplined spending policy that balances today’s needs with the long-term requirements of the institution and the interests of future scientists; and the generous support of organizations and individuals who recognize the value of nurturing basic science.

The primary source of support for the institution’s activities continues to be its endowment. This reliance on institutional funding provides an important degree of independence in the research activities of the institution’s scientists.

As of June 30, 2007, the endowment was valued at over $830 million and had a total annual return, net of management fees, of 19%. During the last decade, the endowment has more than doubled, growing from $338 million to more than $830 million. Carnegie’s endowment has returned an annualized 14.9% over the trailing five years for the period ending June 30, 2007.

For a number of years, under the direction of the finance committee of the board, Carnegie’s endowment has been allocated among a broad spectrum of asset classes, including: fixed-income instruments (bonds), equities (stocks), absolute return investments; real estate partnerships; private equity; and natural resources partnerships. The goal of this diversified approach is to generate attractive overall performance and minimize the volatility that would exist in a less diversified portfolio.

The finance committee of the board regularly examines the asset allocation of the endowment and readjusts the allocation, as appropriate. The institution relies upon external managers and partnerships to conduct the investment activities, and it employs a commercial bank to maintain custody.

The below chart shows the allocation of the institution’s endowment among the asset classes it uses as of June 30, 2007.

<table>
<thead>
<tr>
<th>Asset Class</th>
<th>Target</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Stock</td>
<td>35.0%</td>
<td>35.1%</td>
</tr>
<tr>
<td>Alternative Assets</td>
<td>55.0%</td>
<td>51.7%</td>
</tr>
<tr>
<td>Fixed Income and Cash</td>
<td>10.0%</td>
<td>13.2%</td>
</tr>
</tbody>
</table>
Carnegie’s investment goals are to provide high levels of current support to the institution and to maintain the long-term spending power of its endowment.

Carnegie has also pursued a long-term policy of controlling its spending rate, bringing the budgeted rate down in a gradual fashion from 6+ percent in 1992 to 5.00% for 2007. For the coming year, Carnegie has revised its spending method. In the past, Carnegie determined the funds available from the endowment as five percent of a simple three-year average of year-ending endowment values. Now it follows a 70/30 rule which factors in the previous year’s spending. That is, the amounts available from the endowment under the 70/30 rule is made up of 70% of the previous year’s budget, adjusted for inflation, and 1.5% (5% of 30%) of the previous year-end endowment value, adjusted for inflation and for debt. This method reduces volatility from year-to-year. The following figure depicts actual spending as a percentage of ending market value for the last 15 years.

In addition to investment performance and spending restraint, Carnegie benefits from external support. Within Carnegie’s endowment, there are a number of “funds” that provide support either in a general way or targeted to a specific purpose. The largest of these is the Andrew Carnegie Fund, begun with the original gift of $10 million. Mr. Carnegie later made additional gifts totaling another $12 million during his lifetime. This tradition of generous support for Carnegie’s scientific mission has continued throughout our history and a list of donors in fiscal year 2007 appears in an earlier section of this yearbook. In addition, Carnegie receives important federal and private grants for specific research purposes.
Statements of Financial Position (unaudited)
June 30, 2007 and 2006

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current assets:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash and cash equivalents</td>
<td>1,896,601</td>
<td>677,851</td>
</tr>
<tr>
<td>Accrued investment income</td>
<td>265,104</td>
<td>236,931</td>
</tr>
<tr>
<td>Contributions receivable</td>
<td>4,928,969</td>
<td>6,262,208</td>
</tr>
<tr>
<td>Accounts receivable and other assets</td>
<td>12,685,334</td>
<td>13,821,588</td>
</tr>
<tr>
<td>Bond proceeds held by trustee</td>
<td>122,106</td>
<td>292,688</td>
</tr>
<tr>
<td>Total current assets</td>
<td>$ 19,898,114</td>
<td>$ 21,291,266</td>
</tr>
<tr>
<td>Noncurrent assets:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investments</td>
<td>838,384,075</td>
<td>729,555,134</td>
</tr>
<tr>
<td>Construction in progress</td>
<td>4,191,109</td>
<td>5,590,511</td>
</tr>
<tr>
<td>Property and equipment, net</td>
<td>160,105,312</td>
<td>157,513,110</td>
</tr>
<tr>
<td>Total noncurrent assets</td>
<td>$1,002,680,496</td>
<td>$ 892,658,755</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$1,022,578,610</td>
<td>$913,950,021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liabilities and Net Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts payable and accrued expenses</td>
<td>10,308,534</td>
<td>5,513,044</td>
</tr>
<tr>
<td>Deferred revenues</td>
<td>34,987,592</td>
<td>37,305,764</td>
</tr>
<tr>
<td>Bonds payable</td>
<td>65,248,695</td>
<td>65,194,134</td>
</tr>
<tr>
<td>Accrued postretirement benefits</td>
<td>14,327,973</td>
<td>17,958,000</td>
</tr>
<tr>
<td>Total liabilities</td>
<td>$ 124,872,794</td>
<td>$ 125,970,942</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrestricted:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board designated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment in fixed assets, net</td>
<td>64,182,240</td>
<td>66,712,191</td>
</tr>
<tr>
<td>Designated for managed investment</td>
<td>705,600,951</td>
<td>603,409,368</td>
</tr>
<tr>
<td>Undesignated</td>
<td>45,175,534</td>
<td>32,507,942</td>
</tr>
<tr>
<td>Total net assets</td>
<td>$ 897,705,816</td>
<td>$ 787,979,079</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total liabilities and net assets</td>
<td>$1,022,578,610</td>
<td>$913,950,021</td>
</tr>
</tbody>
</table>
Statements of Activities \(^1\) (unaudited)

Periods ended June 30, 2007 and 2006

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue and support:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grants and contracts</td>
<td>$ 31,280,089</td>
<td>$ 30,590,596</td>
</tr>
<tr>
<td>Contributions, gifts</td>
<td>4,296,626</td>
<td>8,384,447</td>
</tr>
<tr>
<td>Net gain or (loss) on property disposal</td>
<td>(22,822)</td>
<td>(9,290)</td>
</tr>
<tr>
<td>Other income</td>
<td>7,075,827</td>
<td>5,615,663</td>
</tr>
<tr>
<td>Net external revenue</td>
<td>$ 42,629,720</td>
<td>$ 44,581,416</td>
</tr>
<tr>
<td>Investment income</td>
<td>58,567,739</td>
<td>39,771,713</td>
</tr>
<tr>
<td>Unrealized gain</td>
<td>82,375,135</td>
<td>83,731,281</td>
</tr>
<tr>
<td>Total revenues, gains, other support</td>
<td>$183,572,594</td>
<td>$168,084,410</td>
</tr>
<tr>
<td>Program and supporting services:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Magnetism</td>
<td>11,083,178</td>
<td>10,667,105</td>
</tr>
<tr>
<td>Observatories</td>
<td>17,816,485</td>
<td>21,191,344</td>
</tr>
<tr>
<td>Geophysical Laboratory</td>
<td>13,096,369</td>
<td>13,101,603</td>
</tr>
<tr>
<td>Embryology</td>
<td>8,635,996</td>
<td>10,374,852</td>
</tr>
<tr>
<td>Plant Biology</td>
<td>9,928,992</td>
<td>10,617,264</td>
</tr>
<tr>
<td>Global Ecology</td>
<td>3,936,862</td>
<td>3,801,733</td>
</tr>
<tr>
<td>Other programs</td>
<td>609,667</td>
<td>603,602</td>
</tr>
<tr>
<td>Administration and general expenses</td>
<td>7,967,307</td>
<td>8,845,515</td>
</tr>
<tr>
<td>Total expenses</td>
<td>$ 73,074,856</td>
<td>$ 79,203,018</td>
</tr>
<tr>
<td>Adoption of FASB Statement No. 158</td>
<td>(771,001)</td>
<td></td>
</tr>
<tr>
<td>Increase (decrease) in net assets</td>
<td>109,736,737</td>
<td>88,881,392</td>
</tr>
<tr>
<td>Net assets at the beginning of the period</td>
<td>787,979,079</td>
<td>699,097,687</td>
</tr>
<tr>
<td>Net assets at the end of the period</td>
<td>$897,705,816</td>
<td>$787,979,079</td>
</tr>
</tbody>
</table>

\(^1\)Includes restricted, temporarily restricted, and permanently restricted revenues, gains, and other support.
2007 Revenues and Gains ($184 million)

- 77% Investment Income and Gains
- 17% Grants and Contracts
- 6% Gifts and Other

2007 Expenses by Department ($73 million)

- Administration/Other 12%
- Global Ecology 5%
- Plant Biology 14%
- Embryology 12%
- 15% Terrestrial Magnetism
- 24% Observatories
- 18% Geophysical Laboratory
Carnegie Administration

Benjamin Barbin, Advancement Activities Coordinator¹
Sharon Bassin, Assistant to the President/Assistant Secretary to the Board
Shaun Beavan, Systems Administrator²
Gloria Brienza, Budget and Management Analysis Manager
Don Brooks, Building Maintenance Specialist
Marjorie Burger, Financial Manager³
Cady Canapp, Human Resources and Insurance Manager
Ellen Carpenter, Manager of Advancement Activities⁴
Heather Davis, Financial Accountant⁵
Linda Feinberg, Manager of Advancement Operations⁶
Dina Freydin, Senior Grants Accountant⁷
Susanne Garvey, Director of External Affairs
Patricia Harrigan, Financial Accountant⁸
Darla Keefe, Special Assistant for Administration and Building Operations
Ann Keyes, Payroll Coordinator
Yang Kim, Deputy Financial Manager⁹
Lisa Klow, Executive Assistant to the President¹⁰
George Gary Kowalczyk, Director of Administration and Finance
Rhoda Mathias, Secretary to the President¹¹
Tina McDowell, Editor and Publications Officer
Richard Meserve, President
June Napoco-Soriente, Financial Accountant
Michael Pimenov, Endowment Manager
Arnold J. Pryor, Facilities Coordinator
Gotthard Sághi-Szabó, Chief Information Officer
Christine Smith, Chief Advancement Officer
John Strom, Web Manager
Kris Sundback, Financial Manager¹²
Mira Thompson, Manager of Advancement Operations
Vickie Lee Tucker, Administrative Coordinator/Accounts Payable
Yulonda White, Human Resources and Insurance Records Coordinator
Matthew Wright, Science Writer and Publications Coordinator

Carnegie Academy for Science Education

Sarah Bax, Mentor Teacher¹
Guy Brandenburg, First Light Instructor, Mentor Teacher²,³
John Buchanann, Mentor Teacher¹,³
Derek Butts, First Light Assistant⁴
Shaina Byrnes, Summer Forensics Instructor¹
Alexander Cole, Intern¹
Asonja Dorsey, Mentor Teacher¹,³
Nia Dowearly, Intern¹
VanNessa Duckett, Mentor Teacher¹,³
Audrey Edmonds, CASE Coordinator, Intern¹,³
Julie Edmonds, Codirector
Jessica Franklin, Mentor Teacher¹
Ricky Garibay, First Light Assistant, Intern¹,³
Joseph Gellia, Intern³
Tashima Hawkins, Mentor Teacher¹,³
Anne Hemphill, Mentor Teacher¹,³
Gayan Hettipola, Intern¹
Toby Horn, Codirector
Loretta Kelly, Mentor Teacher¹,³
Becky Lippy, Intern¹
Robert Lucas, Intern¹
Fran McCrackin, Mentor Teacher¹,³
Thomas Nassif, Mentor Teacher¹,³
Maxine Singer, Senior Scientific Advisor
Shahza Somerville, Summer Biotech Instructor, CASE Coordinator¹
Annie Thompson, Mentor Teacher¹,³
Latisha Whitley, Intern¹

¹ From January 8, 2007
² From February 1, 2007
³ From April 23, 2007
⁴ To December 31, 2006
⁵ To January 12, 2007
⁶ To May 31, 2007
⁷ From June 25, 2007
⁸ From February 5, 2007
⁹ From May 7, 2007
¹⁰ From July 6, 2006
¹¹ To July 14, 2006
¹² To March 23, 2007

Embryology

Research Staff Members
Alexsky Bortvin, Howard Hughes Medical Institute Carnegie Fellow⁴
Michael Buszczak, American Cancer Society Fellowship, Carnegie Fellow⁵
Liquan Cai, NIH Grant (Brown)⁶
Anna Chan, Howard Hughes Medical Institute Research Associate⁷
Rachel Cox, Howard Hughes Medical Institute Research Specialist
Lucilla Facchin, Eppley Foundation Grant (Halpern)⁸
Donald Fox, Jane Coffin Childs Fellowship⁹
Hongjuan Gao, Carnegie Fellow
Mary Goll, Damon Runyon Cancer Research Fellowship
Daniel Gorelick, Carnegie Fellow
Vinny Guacci, Howard Hughes Medical Institute Research Specialist
Kotaro Hama, Japan Foundation Fellowship
Catherine Huang, American Cancer Society Fellowship⁹
Yung-Shu Kuan, Carnegie Fellow
Robert Levis, Special Investigator, NIH Grant (Spradling with Baylor College of Medicine, subcontract)
Liang Liang, Howard Hughes Medical Institute Research Associate⁸
Ji-Long Liu, Carnegie Fellow
Zhonghua Liu, Howard Hughes Medical Institute Research Associate
Safia Malik, Carnegie Fellow⁹
Lucy Morris, Howard Hughes Medical Institute Research Associate
Sandep Mukhi, NIH Grant (Brown)¹⁰
Todd Nystul, Life Sciences Research Foundation Fellow
Ben Ohlstein, Howard Hughes Medical Institute Research Associate
Itay Onn, Howard Hughes Medical Institute Research Associate¹¹
Joanna Paterson, Carnegie Fellow¹²
Kiran Santhakumar, NIH Grant (Halpern)
DEPARTMENT OF EMBRYOLOGY
Front row (left to right): Doug Koshland, Yixian Zheng, Joseph Gall, Allan Spradling, Alex Bortvin, Marnie Halpern. Second row (left to right): Jeffrey Han, Zhonghua Liu, Yung-Shu Kuan, Mary Goll, Karina Conkrite, Zehra Nizami, Rong Chen. Third row (left to right): Judith Yanowitz, Lucy Morris, Margaret Hoang, Queenie Vong, Katie Lewis, Rejeanne Juste, Mary Ma, David MacPherson. Fourth row (left to right): Chun Dong, Sandrine Blau, Courtney Akitake, Shelley Paterno, Dianne Williams, Ona Martin, Alison Brown, Michelle Macurak, Glenese Johnson. Fifth row (left to right): Kotaro Hama, Dolly Chin, Natalia Wesolowska, Dan Lighthouse, Becky Frederick, Cynthia Wagner, Alisson Pinder, Tina Tootle, Ellen Cammon. Sixth row (left to right): Shusheng Wang, Maggie Sundby, Safia Malik, Zheng-an Wu, Itay Onn, Dean Calahan, Jessica Steele, Brian Hollenback, Nicole Gabriel, Amy Kowalski. Seventh row (left to right): Rachel Cox, Anna Allen, Tara Hardiman, Lamia Wahba, Lea Fortuno, Lori Oroso, Eugenia Dikovskaia, Anastasia Krasnoperova. Eighth row (left to right): Jili Heidinger, Carol Davenport, Julio Castaneda, Cheng Xu, Bob Levis, Don Fox, Vinny Guacci, Evan Siple. Ninth row (left to right): Stephen Heitzer, James Walters, Dan Gorelick, Godfried van der Heijden, Todd Nystul, David Martinelli, Wendy McKoy, Zehra Eifert. Tenth row (left to right): Adem Eifert, Lucilla Facchin, Sandeep Mukhi, Mahmud Siddiqi, Christoph Lepper, Andrew Skora, Andrew Eifert, Tom McDonough.

Zi-Qing Sun, Carnegie Fellow
Tina Tootle, Ruth Kirschstein (NRSA) Fellowship
Ming-Ying Tsai, Howard Hughes Medical Institute Research Associate
Godfried Van der Heijden, Carnegie Fellow
Queenie Vong, Howard Hughes Medical Institute Research Associate
Cynthia Wagner, Special Investigator, Carnegie Fellow
James Walters, Carnegie Fellow
Shusheng Wang, Research Associate, NIH Grant (Zheng)
Zheng-an Wu, Special Investigator, NIH Grant (Gall) and Carnegie Fellow
Cheng Xu, Carnegie Fellow, NIH Grant (Fan)
Hong-Guo Yu, Howard Hughes Medical Institute Research Associate

Predoctoral Fellows and Associates
Courtney Akitake, The Johns Hopkins University
Anna Allen (formerly Krueger), The Johns Hopkins University
Dean Calahan, The Johns Hopkins University
Julio Castaneda, The Johns Hopkins University
Robert DeRose, The Johns Hopkins University
Daniel Ducat, The Johns Hopkins University
Ben Goodman, The Johns Hopkins University
Robyn Goodman, The Johns Hopkins University
Jill Heidinger, The Johns Hopkins University
Margaret Hoang, The Johns Hopkins University
Christoph Lepper, The Johns Hopkins University
Katherine Lewis, The Johns Hopkins University
Daniel Lighthouse, The Johns Hopkins University
Peter Lopez, The Johns Hopkins University
David Martinelli, The Johns Hopkins University
Tim Mulligan, The Johns Hopkins University
Zehra Nizami, The Johns Hopkins University
Lori Oroso, The Johns Hopkins University
Andrew Skora, The Johns Hopkins University
Sara Soper (formerly Clatterbuck), The Johns Hopkins University
Elçin Ünal, The Johns Hopkins University
Lamia Wahba, The Johns Hopkins University

Supporting Staff
Or Amit, Technician
Jen Anderson, Technician
Ellen Cammon, Howard Hughes Medical Institute Research Technician
Patricia Cammon, Howard Hughes Medical Institute Laboratory Helper
Melinda Campbell, Technician
Paul Capesanty, Technician
Rong Chen, Howard Hughes Medical Institute Research Technician I
Dolly Chin, Administrative Assistant
Karina Conkrite, Technician
Carol Davenport, Howard Hughes Medical Institute Research Technician III
Eugenia Dikovskaya, Animal Facility Manager
Chun Dong, Research Scientist
Adem Eifert, Animal Technician
Andrew Eifert, Assistant Facility Manager
Zehra Eifert, Animal Technician
Michael Fletcher, Lab Assistant, Ingenuity Program
Ariela Friedman, Lab Assistant
Lea Fortuno, Animal Care Technician
Nicole Gabriel, Animal Care Technician
Jeremy Gao, Lab Assistant
Warren Hall, Animal Care Technician
Tara Hardiman, Technician
Javi Hartenstein, P/T Fish Feeder
Brian Hollenback, Animal Technician
Ella Jackson, Howard Hughes Medical Institute Laboratory Helper
Fred Jackson, P/T Animal Care Technician
Connie Jewell, Systems Administrator
Gleneese Johnson, Laboratory Helper
Rejeanne Juste, Technician
Susan Kern, Business Manager
Amy Kowalski, Research Technician
Anastasia Krasnoperova, Lab Assistant
Bill Kupiec, Information Systems Manager
Megan Kutzer, Technician
David Lai, Lab Assistant, Ingenuity Program
Jaclyn Lim, Lab Assistant
Michelle Macurak, Technician
Ona Martin, Howard Hughes Medical Institute Research Technician III
Tom McDonough, Facilities Manager
Wendy McKoy, Administrative Assistant
Vashti Miles, Technician
Stephanie Owen, Technician
Shelley Paterno, Howard Hughes Medical Institute Research Technician II
Allison Pinder, Howard Hughes Medical Institute Research Technician III
Earl Potts, Animal Care Technician
Christine Pratt, Howard Hughes Medical Institute Administrative Assistant II
Michael Sepanski, Electron Microscopy Technician
Shirley Shao, Volunteer
Mahmud Siddiqi, Research Specialist
Keeyana Singleton, Howard Hughes Medical Institute Research Technician I
C. Evan Siple, Research Technician
Loretta Steffy, Accounting Assistant
Allen Strauszy, Machinist
Yan Tan, Technician
Rafael Villagaray, Computer Technician
Xin Wang, P/T Laboratory Help
Mike Welch, Technician
Allisandra Wen, P/T Fish Feeder
Dianne Williams, Howard Hughes Medical Institute Research Technician III

Visiting Investigators and Collaborators
Joel Bader, Department of Biomedical Engineering, The Johns Hopkins University
Robert Baker, Department of Physiology and Neuroscience, New York University School of Medicine
James Beck, Department of Physiology and Neuroscience, New York University School of Medicine
Hugo Bennet, Baylor College of Medicine
Ian Blair, Department of Chemistry, University of Pennsylvania
Dana Carroll, Department of Biochemistry, University of Utah
Rosalind Coleman, Department of Nutrition, University of North Carolina
Michael Dean, Laboratory of Genomic Diversity, NCI-Frederick
Maitreya Dunham, Carl Icahn Laboratory, Princeton University
Steven Ekker, Department of Genetics, Cell Biology and Development, University of Minnesota Medical School
Michael Granato, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine
Matthias Hammerschmidt, Max-Planck-Institute of Immunobiology, Germany
Roger Hoskins, Lawrence Berkeley National Laboratory
Yannis Ioannou, Department of Genetics and Genomic Sciences, Department of Gene and Cell Medicine, Mount Sinai School of Medicine
Henry Krause, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Canada
Peter Kwiterovich, Department of Pediatrics, The Johns Hopkins University
Steven Leach, Department of Surgery, Division of Surgical Oncology, The Johns Hopkins University School of Medicine
Li Ma, Laboratory of Molecular Cell Biology and Center of Cell Signaling, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Michael Parsons, Departments of Surgery and Oncology, The Johns Hopkins University School of Medicine
Cecilia Moens, Fred Hutchinson Cancer Research Center
Mari Moren, National Institute of Nutrition and Seafood Research, Norway
Karen Oogema, European Molecular Biology Laboratory, Germany
Erez Raz, Department of Germ Cell Development, Max Planck Institute for Biophysical Chemistry, Germany
Gerald M. Rubin, University of California, Berkeley
Bernard Thiss, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, France
Christine Thiss, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, France
Milena Vuica, Department of Pathology, The Johns Hopkins University School of Medicine

1 To October 23, 2006
2 To August 31, 2006
3 From March 30, 2007
4 To February 15, 2007
5 From March 12, 2007
6 From November 6, 2006
7 To January 17, 2007
8 To July 31, 2006
9 From September 1, 2006
10 From July 1, 2006
11 From April 2, 2007
12 To September 30, 2006
13 To January 31, 2007
14 To January 31, 2007
15 From April 16, 2007
16 From January 10, 2007
17 To August 4, 2006
18 To March 31, 2007
19 From June 1, 2007
20 From June 1, 2007
21 To October 3, 2006
22 To July 1, 2006
23 From January 16, 2007
24 From February 6, 2007
25 From June 18, 2007
26 From December 19, 2006
27 From June 1, 2007
28 From December 19, 2006
29 From May 21, 2007
30 To August 11, 2006
31 To January 21, 2007
32 From February 23, 2007
33 From December 7, 2006
34 To September 30, 2006
35 From September 22, 2006
36 From August 1, 2006
37 From July 13, 2006
38 To September 8, 2006
39 To May 5, 2007
Geophysical Laboratory

Research Staff Members
George D. Cody
Ronald E. Cohen
Yingwei Fei
Marilyn L. Fogel
Alexander Goncharov
Robert M. Hazen
Russell J. Hemley
Wesley T. Huntress, Jr., Director
T. Neil Irvine, Emeritus
Ho-kwang Mao
Bjørn O. Mysen
Douglas Rumble III
Andrew Steele
Viktor Struzhkin

Staff Associates
Przemyslaw Dera
Burkhard Militzer
James Scott

Senior Research Fellows
Dudley R. Herschbach, Harvard University
Dimitri A. Sverjensky, The Johns Hopkins University
Takamitsu Yamanaka
Jinfu Shu,
Giles Maule
James Scott
Bjørn O.Mysen
Ho-kwang Mao
Guoyin Shen,
Ho-kwang Mao,
Hanns-Peter Liermann,
Hui Li,
Michael Y.Hu,
Alexander Gavriliuk,
Arunkumar S.Bommannavar,
High Pressure Collaborative Access Team (HPCAT), High Pressure Synergetic Center (HPSynC) at the Advanced Photon Source (APS), Argonne National Laboratory, Chicago, IL; and National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, Upton, NY

Research Scientists
Peter M. Bell, Adjunct Senior Research Scientist
Nabil Z. Docto,
Marc Fries, NASA
Qi Liang, CVD Diamond
Haozhe Liu, Research Scientist, HPCAT
Giles Maule, NASA
Maddury Somayazulu, CDAC
Jian Xu, Research Scientist, HPCAT
Chih Shuei Yan, CDAC, NSF, Carnegie
Chang-Sheng Zha, CDAC

Summer Education Coordinator and Research Scientist
Stephen A. Gramsch, CDAC Laboratory Manager

Postdoctoral Fellows and Postdoctoral Research Associates
Muhetaar Alhaiti, Postdoctoral Associate, ONR
Pierre Beck, Carnegie Fellow
Andrey Bekker, Carnegie Fellow, NAI
Razvan Caracas, Carnegie Fellow and ONR Postdoctoral Associate
Raja Chellappa, Postdoctoral Associate, DOE-CDAC, DOE-BES
Xiao-Jia Chen, Postdoctoral Associate, DOE
Henderson James Cleaves II, Senior Research Associate, NAI
Jennifer L. Eigenbrode, NAI Associate
Kenneth P. Esler, Postdoctoral Associate, NSF
Dionysis I. Foustoukos, Carnegie Fellow
Jennifer Jackson, Carnegie Fellow
Steven Jacobsen, Barbara McClintock Fellow, NSF
Timothy Jenkins, Postdoctoral Associate, DOE
Alexander Kollias, Postdoctoral Associate, NSF
Tetsuya Komabayashi, JSPS Fellow, Japan
Yuefeng Meng, Carnegie Fellow
Penny L. Morrill, Carnegie Fellow and NAI Associate
Seth D. Newsome, Postdoctoral Associate, NSF
Shuhai Ono, Postdoctoral Associate, NASA
Dominic Papineau, Carnegie Fellow
Qing Peng, Postdoctoral Associate, ONR
Simon Nicholas Platts, Postdoctoral Associate, Santa Fe Inst. Grant FIBR
Angele Ricolleau, Carnegie Fellow, Postdoctoral Associate, NSF
Mathieu Roskosz, Carnegie Fellow, Postdoctoral Associate, NSF
Matthew Schrenk, Carnegie Fellow
Xianwei Sha, Postdoctoral Associate, DOE, ASC, NSF
Alexander Smirnov, Carnegie Fellow
Elizabeth Cottrell Stevenson, Carnegie Fellow
Sergey Tkachev, Postdoctoral Associate, NSF
Jan Vorberger, Postdoctoral Associate
Heather Watson, Carnegie Fellow
Michelle Weinberger, Postdoctoral Associate, DOE
Hikaru Yabuta, Carnegie Fellow
Chih-Shuei Yan, Postdoctoral Associate, NSF
Lin Wang, Postdoctoral Associate, Balzan Foundation Fund
Li Zhang, Postdoctoral Associate, NASA

Predoctoral Fellows and Predoctoral Research Associates
Liewei Deng, NSF
Matthieu Galvez, Personal Funds
Patrick Griffin, NAI, Balzan Foundation Fund, Prewitt-Hazen Gift Fund
Shih-Shian Ho, NSF
Yann Le Gac, Personal Funds
Rebecca Martin, NASA Marshall Space Flight Center and ASTID
Maia Schweizer, ASTID and NAI, Carnegie
Sandra Siljestroem, NASA
Verena Starke, NASA Marshall Space Flight Center
Yao Wu, NSF

Research Interns
Rebecca Fischer, Northwestern University
Miriam Himman, Harvard University
Sapthala Karyillalda, University of Peradeniya, Sri Lanka
Seth King, Purdue University
Amanda Klaus, Scripps College
Laura Kubista, St. Norbert College
Dominik Kurzydlowski, University of Warsaw, Poland
Alexander Levedahl, St. Anselm’s Abbey School
Christy Mancuso, American University
Ana Maria Molina, Universidad Pontificia Bolivariana, Columbia
GEOPHYSICAL LABORATORY

Ben McWhorter, George Mason University
Zach Newman, Case Western Reserve University
Nissa Sandley, University of Wisconsin, Stevens Point
Emily Snyder, American University
Brian Smith, Salisbury University
William Wurzel, Lafayette College

High School Students
Lukas Kater, Gymnasium Lindenberg, Allgäu, Germany
Andrew Kung, Montgomery Blair High School, Silver Spring, MD
Torbjorn Lien, Ullern Videregaende Skole, Oslo, Norway

Supporting Staff
Joshua Andres, Electronics Technician52
Maceo T. Bacote, Building Engineer53
Gary A. Bors, Building Engineer54
Valance Brenneis, Laboratory Technician
Bobbie L. Brown, Instrument Maker
Stephen D. Coley, Sr., Instrument Shop Supervisor
Phillip Davis, Accounts Payable Specialist55
Roy R. Dingus, Facility Manager56
Pablo D. Esparza, Maintenance Technician57
David J. George, Electronics Technician58
Allen F. Grimes, Info Systems Maintenance Specialist59
Christos G. Hadidiacos, Electronics Engineer
Claire Hardy, Technical Secretary60
Shaun J. Hardy, Librarian61
Stephen Hodge, Instrument Maker
Garret Huntress, Systems Administrator, Systems Developer
Marjorie E. Imlay, Assistant to the Director
Lauren Kerr, Research Technician, Charles River Grant62
William E. Key, Building Engineer63
Szczesny (Felix) Krasnidi, CVD Diamond Senior Engineer
Joseph Lai, Laboratory Scientist/Engineer
Jeff Lightfield, Controller
Fabian Moscoso, Building Engineer Apprentice64
Susana Mysen, Technical Assistant65
Trong Nguyen, Assistant Controller
Morgan Phillips, Administrative Assistant
Pedro J. Roa, Maintenance Technician66
Haijun (Kevin) Shu, CVD Diamond Technician
Helen Venzon, Accounts Payable Specialist67
Twanna Washington, Technical Assistant68
Merri Wolf, Library Technical Assistant69
Thomas Yu, CVD Diamond Technician

Visiting Investigators (Washington, DC)
Hans Amundsen, Centre for Physics of Geological Processes, Norway
Gretchen K. Benedix, Smithsonian Institution
Liane G. Benning, University of Leeds, United Kingdom
Constance M. Bertka, American Association for the Advancement of Science
Lauren Borkowski, College of William and Mary
Dina M. Bower, Old Dominion University
Kevin Burke, University of Houston70
Christopher L. Cahill, George Washington University
Aaron Celestian, SUNY, Stony Brook
Nancy Chabot, Applied Physics Laboratory, The Johns Hopkins University
Jinyang Chen, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
I.-Ming Chou, US Geological Survey
Jennifer Ciezak, US Army Research Laboratory, Aberdeen Proving Grounds
Albert S. Colman, University of Maryland Biotechnology Institute
Pamela G. Conrad, Jet Propulsion Laboratory
Catherine Corrigan, National Museum of Natural History, Smithsonian Institution
William B. Daniels, University of Delaware
Valentina Degtyareva, Instituto de Solid State Physics, Russian Academy of Sciences
Lars Ehm, SUNY, Stony Brook
Mikhail Eremets, Max Planck Institute, Germany
Joseph Feldman, US Naval Research Laboratory
Timothy Filley, Purdue University
Yuri Freiman, B. Verkin Institute of Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov
Friedemann Freund, NASA Ames Research Center
Harry W. Green, University of California, Riverside71
Wojciech Grochala, University of Warsaw, Poland
Gudmundur H. Gudfinnsson, University of Texas at Dallas
Bradley Guy, University of Johannesburg, South Africa
John M. Hanchar, George Washington University
Bruce Jakosky, University of Colorado
Caroline Jonsson, The Johns Hopkins University
Christopher Jonsson, The Johns Hopkins University
Haemyeong Jung, University of California, Riverside
Guk Lac Kim, Smithsonian Institution
Tetsuya Kombayashi, Tokyo Institute of Technology
Yajie Lei, George Washington University
Hui Li, Beijing Synchrotron Radiation Facility, Inst. of High Energy Physics, China
Jie Li, University of Illinois at Urbana-Champaign
Tianfu Li, Chinese Academy of Geological Sciences
Amy Y. Liu, Georgetown University
Jaime Marian, California Institute of Technology
Hideki Masago, University of Tokyo
Timothy J. McCoy, Smithsonian Institution
Harold Morowitz, George Mason University
Yoshitake Ogasawara, University of Tokyo
Jie Li, Laboratory Synchrotron Facilities
Caroline Ostertag-Henning, University of Muenster, Germany
Simon Nicholas Platts, University of California, Santa Cruz
Yu S. Ponomos, Institute of Metal Physics, Russia
Robert P. Post, Research Technology Associates, Washington, DC
Dean C. Presnall, University of Texas at Dallas
Charles T. Prewitt, Tucson, Arizona
Huw Rowlands, Blue Sky Project Solutions, United Kingdom
Mikhail Sakharov, Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka
Christelé Sanloup, Laboratoire MAGIE, Université Pierre et Marie Curie, France
Barbara Smallwood, University of Southern California
Gerd Steine-Neumann, Bayerisches Geoinstitut, University of Bayreuth, Germany
Mikhail Strzhemechny, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov
Valery Terwilliger, Smithsonian Institution
Noreen C. Tuross, Harvard University
Yuchiro Ueno, Tokyo Institute of Technology, Japan
James A. Van Orman, Case Western Reserve University
Qingchen Wang, Chinese Academy of Sciences, Guangzhou
Wansheng Xiang, Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
Yukihiro Yoshimura, National Defense Academy of Japan
Hak Nan Yung, Chinese Academy of Sciences, Guangzhou
Xiaowei Zeng, George Washington University
Yi-Gang Zhang, Academia Sinica, China
Zeming Zhang, Academia Sinica, China
Guangtian Zou, Center for Superhard Materials, Jilin University, Changchun, China

Gary N. Chesnut, Los Alamos National Laboratory, HPCAT
J. Croy, University of Nevada, Las Vegas, HPCAT
Q. Cai, Jilin University, China, NSLS
Nicolas Cunningham, University of Alabama at Birmingham, HPCAT
Hyunchae Cynn, Lawrence Livermore National Laboratory, HPCAT
Dana Dattlebaum, Los Alamos National Laboratory, HPCAT
V. S. M. Dharmaraj, University of Missouri, NSLS
Larissa Dobrzhinetskaya, University of California, Riverside, NSLS
Dan Dolan, Sandia National Laboratories, HPCAT
Zhaohui Dong, University of Western Ontario, Canada, NSLS
B. Downs, University of Arizona, HPCAT
Daniel Errandonea, University of Valencia, Spain, HPCAT
William Evans, Lawrence Livermore National Laboratory, HPCAT
Yuan Feng, Massachusetts Institute of Technology, HPCAT
M. Frank, Northern Illinois University, HPCAT
Larry Friedman, Illinois Institute of Technology, HPCAT
Chunxiao Gao, Texas Tech University, HPCAT
P. Gao, New Jersey Institute of Technology, NSLS
Alexander Gavriluk, Russian Academy of Sciences, HPCAT
Lysii George, Florida International University, HPCAT
H. Giebers, University of Nevada, Las Vegas, HPCAT
Jeffrey Gluth, Sandia National Laboratories, HPCAT
C. Gobin, University of Nevada, Las Vegas, HPCAT
A. Gordon, University of Nevada, Las Vegas, HPCAT
Oonjen Grubor-Urosevic, University of Nevada, Las Vegas, HPCAT
Qixun Guo, Los Alamos National Laboratory, HPCAT
Richard Hacking, Sandia National Laboratories, NSLS
Wei Han, Brookhaven National Laboratory, NSLS
Monika Hartl, Los Alamos National Laboratory, HPCAT
Emily Hartnett, University of Nevada, Las Vegas, HPCAT
Randy Hickman, Sandia National Laboratories, NSLS
John Howard, University of Nevada, Las Vegas, HPCAT
Sabrina Huggins, Indiana University South Bend, HPCAT
Justin Hustoft, Massachusetts Institute of Technology, HPCAT
Gianluca Iezzi, CHIETI-PESCARA, Italy, NSLS
V. Iota, University of Nevada, Las Vegas, HPCAT
Jennifer Jackson, California Institute of Technology, HPCAT
Matthew Jacobson, University of Nevada, Las Vegas, HPCAT
Zolt Jenci, Lawrence Livermore National Laboratory, HPCAT
Patricia Kalita, University of Nevada, Las Vegas, HPCAT
Jennifer Keen, University of Nevada, Las Vegas, HPCAT
Svetlana Kharlamova, Advanced Photon Source, Argonne National Laboratory, HPCAT
Jae-hyun Klepeis, Lawrence Livermore National Laboratory, HPCAT
Denis D. Klug, National Research Council Canada, University of Saskatchewan, NSLS
M. Kruger, University of Missouri, NSLS
Ravhi Kumar, University of Nevada, Las Vegas, HPCAT
Alexei Kuznetsov, GSECARS, University of Chicago, HPCAT
Thomas Laetsch, University of Arizona, HPCAT
J. Larson, University of Nevada, Las Vegas, HPCAT
Barbara Lavina, University of Nevada, Las Vegas, HPCAT
Amy Lazicki, Lawrence Livermore National Laboratory, HPCAT
Peter Lazor, Uppsala University, Sweden, HPCAT
G. Lee, Lawrence Livermore National Laboratory, HPCAT
Kanani Lee, New Mexico State University, NSLS
Sung Keun Lee, Seoul National University, Korea, HPCAT
H. Li, Chinese Academy of Sciences, HPCAT
X. Li, Chinese Academy of Sciences, HPCAT
Jung-Fu Lin, Lawrence Livermore National Laboratory, HPCAT
Magnus Lipp, Lawrence Livermore National Laboratory, HPCAT
B. Liu, Jilin University, China, HPCAT, NSLS
J. Liu, Chinese Academy of Sciences, HPCAT
M. Long, SUNY, Stony Brook, NSLS
Yang Zhang Ma, Texas Tech University, HPCAT
Michael Madlener, Sandia National Laboratories, NSLS
Wendy Mao, Los Alamos National Laboratory, HPCAT

Visiting Investigators (Geophysical Laboratory Synchrotron Facilities)
Alice Acatrinei, Los Alamos National Laboratory, HPCAT
Y. Al-Khatabeh, New Mexico State University, HPCAT
P. Allen, SUNY, Stony Brook, NSLS
Bruce Baer, Lawrence Livermore National Laboratory, HPCAT
Sean Bajar, University of Nevada, Las Vegas, HPCAT
J. Baker, University of Nevada, Las Vegas, HPCAT
E. Baxter, University of Nevada, Las Vegas, HPCAT
Lauren Borkowski, George Washington University, HPCAT
Andrew Campbell, University of Maryland, HPCAT
Krystle Catalli, Massachusetts Institute of Technology, HPCAT
Raja Chellappa, University of Nevada, Reno, HPCAT
Bin Chen, University of California, Berkeley, NSLS
J. Chen, SUNY, Stony Brook, NSLS
J. McClure, University of Nevada, Las Vegas, HPCAT
Sebastien Merkel, University of Lille, France, HPCAT
N. Miller, University of Maryland, HPCAT
Susan Mini, Northern Illinois University, HPCAT
Lowell Miyagi, University of California, Berkeley, HPCAT
Kent Perkins, Washington State University, HPCAT
Jeffrey Pietryga, Los Alamos National Laboratory, HPCAT
Vitali Prakapenka, GSECARS, University of Chicago, HPCAT
Michael Pravica, University of Nevada, Las Vegas, HPCAT, NSLS
Andrea Prodi, Massachusetts Institute of Technology, HPCAT
Z. Qin, New Jersey Institute of Technology, NSLS
Wei Qiu, University of Alabama at Birmingham, HPCAT
Z. Quine, University of Nevada, Las Vegas, HPCAT
Selva Vennila Raju, Florida International University, HPCAT
Frances Reid, Carleton College, NSLS
Hahnbindt Rhee, Lawrence Livermore National Laboratory, HPCAT
M. Roderick, Sandia National Laboratories, NSLS
Beatriz Roldan-Cuenya, University of Nevada, Las Vegas, HPCAT
Edward Romano, University of Nevada, Las Vegas, HPCAT
B. Sahoo, University of Nevada, Las Vegas, HPCAT
L. Sanchez, Los Alamos National Laboratory, HPCAT
D. Santamaria, University of Valencia, Spain, HPCAT
Henry Scott, Indiana University South Bend, HPCAT
Chris Seagle, University of Chicago, HPCAT
David Shakhorostov, University of Western Ontario, Canada, NSLS
Sang-Heon Shim, Massachusetts Institute of Technology, HPCAT
A. Simon, Northern Illinois University, HPCAT
Philip Skemer, Yale University, NSLS
John Smidley, Brookhaven National Laboratory, NSLS
Yang Song, University of Western Ontario, Canada, NSLS
O. Sramek, Yale University, NSLS
Lewis Stevens, Los Alamos National Laboratory, HPCAT
T. Sun, SUNY, Stony Brook, NSLS
Varghese Swamy, Monash University, Australia, HPCAT
Kimberly Tait, Los Alamos National Laboratory, HPCAT
Elizabeth Tanis, University of Nevada, Las Vegas, HPCAT
Oliver Tschauer, University of Nevada, Las Vegas, HPCAT, NSLS
John Tse, National Research Council Canada, University of Saskatchewan, NSLS
Stefan Turencu, Washington State University, HPCAT
Trevor Tyson, New Jersey Institute of Technology, NSLS
Nenad Velisavljevic, Los Alamos National Laboratory, HPCAT
L. Wang, Jilin University, China, HPCAT
Heather Watson, Lawrence Livermore National Laboratory, NSLS
W. Xiao, Chinese Academy of Sciences, HPCAT
Choon-shik Yoo, Lawrence Livermore National Laboratory, HPCAT
T. Yu, SUNY, Stony Brook, NSLS
Brian Yulga, University of Nevada, Las Vegas, HPCAT, NSLS
H. Zhang, University of California, Berkeley, NSLS
Tao Zhou, New Jersey Institute of Technology, NSLS
Kiril Zhurvalev, Los Alamos National Laboratory, HPCAT
Kurt Zimmerman, Washington State University, HPCAT

1 To June 30, 2007
2 To June 15, 2007
3 To July 31, 2006
4 From April 3, 2007
5 To July 1, 2006
6 From July 1, 2006
7 From May 1, 2007
8 From July 1, 2006
9 From July 1, 2006
10 Retired April 30, 2007
11 From May 1, 2007
12 From March 15 to May 20, 2007
13 To April 30, 2007
14 From May 1, 2007
15 From October 2, 2006, to December 12, 2006
16 From October 2, 2006, to December 12, 2006
17 From March 5, 2007
18 To September 30, 2006
19 From June 1, 2007
20 From January 2, 2007
21 To January 5, 2007
22 From September 5, 2006
23 From July 3, 2006
24 To November 14, 2006
25 To August 10, 2006
26 To June 6, 2007
27 From October 10, 2006, to June 18, 2007
28 From August 10, 2006
29 To March 1, 2007
30 To June 30, 2007
31 From September 11, 2006
32 To December 31, 2006
33 From October 2, 2006
34 To August 18, 2006
35 From November 1, 2006
36 To September 15, 2006
37 To December 31, 2006
38 To May 25, 2007
39 To January 10, 2007
40 From March 5, 2007
41 From January 1, 2007
42 From January 9, 2007
43 From September 5, 2006
44 To September 15, 2006
45 From March 16, 2007
46 To July 15, 2006
47 To July 1, 2006
48 To July 1, 2006
49 From July 13, 2006, to December 31, 2006
50 To October 19, 2006
51 From April 1, 2007
52 From October 2, 2006, to October 31, 2006
53 Joint appointment with DTM
54 Joint appointment with DTM
55 To April 30, 2007
56 Joint appointment with DTM
57 Joint appointment with DTM
58 To December 31, 2006
59 From February 1, 2007
60 Deceased January 10, 2007
61 Joint appointment with DTM
62 From May 16, 2007
63 Joint appointment with DTM
64 From August 21, 2006, joint appointment with DTM
65 From February 9, 2007
66 Joint appointment with DTM
67 From June 18, 2007
68 From May 11, 2007
69 Joint appointment with DTM
70 Joint appointment with DTM
71 Joint appointment with DTM
72 Joint appointment with DTM
73 Joint appointment with DTM

Joint appointment with DTM

Joint appointment with DTM

Joint appointment with DTM

Joint appointment with DTM
Global Ecology

Research Staff Members
Gregory Asner
Joseph A. Berry
Kenneth Caldeira
Christopher B. Field, Director

Postdoctoral Fellows and Associates
Cristina Archer, Stanford University
Long Cao, University of Illinois
Noel Gurwick, Cornell University
Benjamin Houlton, Princeton University
Cho-ying Huang, University of Arizona
Maoyi Huang, University of California, Berkeley
Robin Martin, University of Colorado
Damon Matthews, University of Victoria, Canada
Halton Peters, Stanford University
Roland Pieruschka, Forschungszentrum Jülich, Germany

Supporting Staff
Christian Andreassi, Laboratory Technician
Christopher Carlson, Laboratory Assistant
Matthew Colgan, Laboratory Assistant
Yuka Estrada, Laboratory Technician
Lawrence Giles, Senior Laboratory Technician
Kelly Gleischman, Laboratory Technician
Robert Haxo, Laboratory Technician
Matthew Jones, Laboratory Technician
Ty Kennedy-Bowdoin, Laboratory Technician
David Knapp, Senior Laboratory Technician
Melissa Kunz, Laboratory Assistant
Linda Longoria, Administrative Assistant
George Merchant, Senior Programmer
Paulo Oliveira, Laboratory Technician
Rebecca Raybin, Laboratory Assistant
Mark Rogers, Laboratory Technician
Todd Tobeck, Laboratory Coordinator
Mitsuhiko Tsukimoto, Laboratory Technician
Tim Varga, Laboratory Technician

1 From April 1, 2007
2 To June 30, 2007
3 From September 1, 2006
4 To April 6, 2007
5 To June 30, 2007
6 From May 1, 2007, to June 30, 2007
7 To April 6, 2007
8 From May 1, 2007, to June 30, 2007
9 To April 6, 2007
10 To June 30, 2007
11 To November 15, 2006
12 To June 1, 2007
13 To November 15, 2006
14 To June 1, 2007
15 To November 16, 2006, to May 3, 2007
16 From July 10, 2006, to June 8, 2007
The Observatories

Research Staff Members
Alan Dressler
Wendy Freedman, Director
Luis Ho
Patrick McCarthy
Andrew McWilliam
John Mulchaey
Augustus Oemler, Jr., Director Emeritus
Eric Persson
George Preston, Director Emeritus
Michael Rauch
Allan Sandage, Staff Member Emeritus
François Schweizer
Leonard Searle, Director Emeritus
Stephen Shectman
Ian Thompson
Ray Weymann, Director Emeritus

Research Associates
Dan Kelson, Staff Associate
Barry Madore, Senior Research Associate

Technical Staff Members
Matt Johns, Associate Director of the Observatories
Alan Uomoto, Magellan Technical Manager

Postdoctoral Fellows and Associates
George Becker, Postdoctoral Associate
Edo Berger, Carnegie-Princeton Hubble Fellow
Christopher Burns, Postdoctoral Associate
Rupali Chandar, Postdoctoral Research Associate
Jeffrey Crane, Postdoctoral Associate
Marla Geha, Hubble Fellow
Michael Gladders, Hubble Fellow
Inese Ivans, Carnegie-Princeton Fellow
Tesla Jeltema, Postdoctoral Associate
Daisuke Kawata, Postdoctoral Associate
Andreas Koch, P/T Research Associate
Juna Kollmeier, Carnegie-Princeton Hubble Fellow
Ivo Labbé, Carnegie Fellow
Jennifer Marshall, Carnegie Fellow
Jane Rigby, Spitzer Fellow
Mark Seibert, Postdoctoral Associate
Violet Taylor, Postdoctoral Associate
Haojing Yan, Physical Scientist

Las Campanas Research Staff
Mark Phillips, Associate Director, Las Campanas Observatory and Magellan Telescopes
Miguel Roth, Director, Las Campanas Observatory

Las Campanas Fellows and Associates
Ricardo Covarrubias, Magellan Fellow
David Floyd, Magellan Fellow
Gaston Folatelli, Postdoctoral Fellow
Joanna Thomas-Osip, Magellan Research Associate

Las Campanas Visiting Investigator
Nidia Morell, Visiting Scientist

Support Scientist
David Murphy, Instrument Scientist

External Affairs, Pasadena
Arnold Phifer, Regional Director of Advancement

Supporting Staff, Pasadena
Alex Athey, Adaptive Optics Systems Engineer
Alan Bagish, Las Campanas Observatory Programmer
Christoph Birk, Data Acquisition Programmer
Jerson Castillo, Instrument Maker
Ken Clardy, Programmer
Judith Collison, Magellan Project Administrative Assistant/Assistant Business Manager
Paul Collison, Computer Systems Manager
Jorge Estrada, Electronics Technician
John Grula, Head Librarian, Information Services/Publications Manager
Tyson Hare, Mechanical Engineer
Earl Harris, Shipping and Receiving Clerk
Charles Mull, Magellan Project Mechanical Engineer
Silvia Hutchison, Assistant to the Director
Sharon Kelly, Buyer
Minjin Kim, Research Assistant
Vincent Kowal, Machine Shop Foreperson/Instrument Maker
Elsa Luna, Controller
Becky Lynn, Secretary
Luis Ochoa Ramirez, Accounts Payable Specialist
Greg Ortiz, Assistant, Buildings and Grounds
Robert Pitts, Assistant, Buildings and Grounds
Scott Rubel, Associate Facilities Manager
Eli Slawson, GMT Assistant
Jeanette Stone, Purchasing Manager
Robert Storts, Instrument Maker
Gregory Walth, Data Analyst
Steven K. Wilson, Facilities Manager
Pamela Wyatt, Research Assistant

Supporting Staff, Las Campanas
Carolina Alcayaga, Purchasing Officer
Ricardo Alcayaga, Mechanic
Juan Alfaro, Magellan Site Maintenance Support
Hernán Ángel, Driver/Purchaser
Jorge Araya, Magellan Telescope Operator
Hector Balbontín, Chef
Luis Boldt, Research Assistant
Jorge Bravo, Magellan Instrument Specialist
Patricio Carmona, Janitor
Pedro Carrizo, Plumber
Gilberto Carvajal, El Pino Guard
Jorge Castillo, Paramedic
Emilio Cerda, Magellan Electronics Engineer
Johnny Chavez, Chef Assistant
Carlos Contreras, Science Support
Angel Cortés, Accountant
Henry Cortés, Electrician
José Cortés, Janitor
Jorge Cuadra, Mechanic
Óscar Duhulde, Mechanical Technician
Julio Egaña, Painter
Juan Espoz, Mechanic
Glen Eychaner, Telescope Systems Programmer
Carlos Flanega, Janitor
Javier Fuentes, Night Assistant
Jaime Gómez, Accounting Assistant
Danilo González, El Pino Guard
Luis González, Janitor
Sergio González, Science Support
Javier Gutiérrez, Mechanical Technician
Luis Gutiérrez, Mechanic
Nelson Ibache, Mechanical Assistant
Marco Jara, Chef
Patricio Jones, Magellan Electronics Engineer
Marc Leroy, Assistant Telescope Engineer
Leondil Lillo, Carpenter
Gabriel Martin, Magellan Instrument Specialist
Mauricio Martínez, Magellan Telescope Operator
Marcos Medina, Chef
Miguel Méndez, Mechanical Technician
Víctor Meriño, Magellan Instrument Specialist
Mario Mondaca, P/T El Pino Guard
César Muena, GMT Site Testing Support
Erik Muñoz, Accountant
Pascual Muñoz, Chef
Silvia Muñoz, Business Manager
Mauricio Navarrete, Magellan Instrument Specialist
Hernán Nutier, Magellan Telescope Operator
Miguel Ocazanza, Administrative Assistant
Hermin Oliveras, Night Assistant
David Osip, Magellan Instrumentation Scientist
Jorge Para, Mountain Superintendent
Fernando Peralta, Night Assistant
Frank Perez, Site Manager/Telescope Engineer
Patricio Pinto, Electronics Engineer
Gabriel Prieto, GMT Site Testing Support
Félix Quiroz, Mechanical Technician
Andrés Rivera, Electronics Engineer
Hugo Rivera, Magellan Telescope Operator
Javier Rivera, Paramedic
Honororio Rojas, Water Pump Operator
Jorge Rojas, Janitor
Felipe Sanchez, Telescope Controls Programmer
Joanna Thomas-Osip, Site Test Scientist
Gabriel Tolmo, El Pino Guard
Héctor Torres, Mechanical Assistant
Manuel Traslaviña, Heavy Equipment Operator
Geraldo Vallarides, Magellan Telescope Operator
Sergio Vera, Magellan Telescope Operator
José Soto Villagrán, Telescope Controls Programmer
Patricia Villar, Administrative Assistant

Visiting Investigators
Elizabeth Adams, Massachusetts Institute of Technology
Mirza Ahmic, University of Toronto, Canada
Gemma Anderson, Harvard University, CfA
Nahum Arav, University of Colorado
Claudia Araya, Pontificia Universidad Católica de Chile
Julia Arias, Universidad de La Serena, Chile
Frederick Baganoff, Massachusetts Institute of Technology
Reba Bandyopadhyay, University of Florida
Rodolfo Barbá, Universidad de La Serena, Chile
Joseph Barranco, Harvard University, CfA
Felipe Barrientos, Pontificia Universidad Católica de Chile
THE CARNEGIE OBSERVATORIES

Ian Roederer, University of Texas
Folkers Rojas, Massachusetts Institute of Technology
Patricio Rojo, Universidad de Chile
Carlos Roman, Harvard University, CfA
Aaron Romanowkski, Universidad de Concepción, Chile
Gregory Rudnick, National Optical Astronomy Observatories
M. Teresa Ruiz, Universidad de Chile
David Rupke, University of Maryland
Penny Sackett, Australian National University
Ricardo Salinas, Universidad de Concepcion, Chile
Paul Scheckter, Massachusetts Institute of Technology
Katherine Schelsinger, Ohio State University
Aleks Scholz, University of Toronto, Canada
Matthias Schreiber, University of Valparaiso, Chile
Axel Schwope, Astrophysikalisches Institut Potsdam, Germany
Marc Seigar, University of California, Irvine
Jacqueline Seron, Universidad de Concepción, Chile
Scott Sheppard, Department of Terrestrial Magnetism
Robert Simcoe, Massachusetts Institute of Technology
Leah Simon, University of Florida
Malcolm Smith, Cerro Tololo Inter-American Observatory, Chile
Alicia Soderberg, California Institute of Technology
Ilona Soechting, Oxford University, UK
Antony Stark, Harvard University, CfA
Daniel Steeghs, Harvard University, CfA
Mark Sullivan, University of Toronto
Ajay Tannirkulam, University of Michigan
Brian Taylor, Boston University
John Taylor, University of Warwick, UK
Nicolas Tejos, Universidad de Chile
Christopher Thom, University of Chicago
Jeremy Tinker, University of Chicago
Exequiel Treister, Universidad de Chile
Chad Trujillo, Gemini Observatory, North
Jonathan Trump, University of Arizona
Valeska Valdivia, Universidad de Chile
Christian Vega, Pontificia Universidad Católica de Chile
Sylvain Veilleux, University of Maryland
Shanil Virani, Yale University
Stuart Vogel, University of Maryland
Matthew Walker, University of Michigan
Junxian Wang, University of Science and Technology of China
Christopher Watson, University of Sheffield, UK
Alicya Weinberger, Department of Terrestrial Magnetism
Benjamin Weiner, University of Arizona
Hsiao Wen-Chen, University of Chicago
Jessica Wern, University of Michigan
Kurtis Williams, University of Texas
Joshua Winn, Massachusetts Institute of Technology
Howard Yee, University of Toronto, Canada
David Yong, Australian National University
Alfredo Zenteno, Harvard University, CfA
Guangtun Zhu, New York University

1 From August 1, 2006
2 From July 3, 2006
3 To September 14, 2006
4 To August 31, 2006
5 From April 1, 2007
6 From October 15, 2006
7 From September 1, 2006
8 From September 17, 2006
9 From July 1, 2006
10 From May 14, 2007
11 From February 12, 2007
12 To April 14, 2007
13 To July 3, 2006
14 From July 10, 2006
15 To February 2, 2007
16 To December 31, 2006
17 From October 15, 2006; formerly GMT
18 From February 5, 2007
19 To August 7, 2006
20 From November 13, 2006
21 From August 22, 2006
22 From May 8, 2007; formerly GMT
23 Site Testing Support
24 From May 18, 2007
25 From April 15, 2007
26 To August 21, 2006
DEPARTMENT OF PLANT BIOLOGY

Marcella Pott, NSF Research Associate
Wensheng Qin, DOE Research Associate
Brenda Reinhard, NIH Research Associate
Meghan Sharp, NIH Research Associate
Nakako Shibagaki, USDA Research Associate
Jeffrey Shrago, NSF Research Associate
Anne Steunou, NSF Research Associate
Yu Sun, NIH Research Associate
Hitomi Takanaga, NIH Research Associate
Wenqiang Tang, DOE Research Associate
Tong-Seung Tseng, NSF Research Associate
Chao-Jung Tu, Carnegie Fellow
William Underwood, Carnegie Fellow
Thomas Walk, NSF Research Associate
Yinglang Wan, NSF Research Associate
Stephan Wenkel, NIH Research Associate
Qiaofeng Yang, NSF Research Associate

Predoctoral Fellows and Associates
Melissa Adams, Stanford University
Andrew Carroll, Stanford University
Hae-Young Cho, Carnegie Research Associate
Thomas Eckhardt, HFSP Predoctoral Fellow
Michelle Facette, Stanford University
Joshua Gendron, Stanford University
Ryan Gutierrez, Stanford University
Blaise Hamel, Stanford University
Katherine Mackey, Stanford University
Alex Paredes, Stanford University
Wirulda Pootakham, Stanford University

Supporting Staff
Hulya Aksoy, AP Clerk
Stephane Bagneris, Intern
Tanya Berardini, Curator
Kathryn Bump, Human Resources Specialist
Kate Chabarek, Laboratory Technician
Huanjing Chen, Laboratory Technician
Dahlia Wist, Greenhouse Manager
Susan Cortinas, Grants Administrator
Ericka Fernquist, Intern
Gabriele Fiene, Laboratory Technician
Joseph Filla, Systems Administrator
Hartmut Foerster, Curator
Glenn A. Ford, Laboratory Manager
Margarita Garcia-Hernandez, Curator
Nathan Gendron, Laboratory Assistant
Cynthia Gonzalez, Intern
Renee Halbrook, Laboratory Technician
Adam Herman, Intern
Bi-Huei Hou, Laboratory Technician
Eva Huala, Head Curator
Chi Hsu, Intern
Young Hsu, Intern
Katica Ilic-Grubor, Curator
John Jacobson, Greenhouse Assistant
Natalie Khitrov, Laboratory Technician
Nadejda Kleimenova, Laboratory Assistant
Alexey Kleytmann, Assistant Curator
Ann Kuljian, Laboratory Assistant
Philippe Lamesch, Curator
Evana Lee, Financial Analyst
Donghui Li, Curator
Khar-Wai Lye, Laboratory Technician
Laura Macmillan, Intern
John McGee, Intern
Thomas Meyer, Software Engineer
Dorianne Moss, Laboratory Technician
Robert Muller, Technical Lead Curator
Anh Nguyen, Intern
Thuy Nguyen, Lab Assistant
Dana Parmeter, Research Technician
Patti Pinderer, Laboratory Technician
Larry Ploetz, Systems Administrator
Amie Radenbaugh, Intern
Blanca Rivas, Dishwasher
Rashmi Sanbhathi, Intern
Antoinette Sero, Laboratory Assistant
David Simmons, Laboratory Assistant
Lisa Simons, Accounts Payable Specialist/Receptionist
Shanker Singh, Database Administrator
Jon Slenik, Programmer
Mary A. Smith, Business Manager
Paul Sterbenz, Facilities Manager
Vanessa Swing, Curator Assistant
Julie Tacklind, Laboratory Assistant
Deborah Tausch, Financial Officer
Christophe Tissier, Curator
Azam Noorani Vatani, Laboratory Assistant
Angelica Vazquez, Dishwasher
Ismael Villa, Facilities Assistant
Raymond Von Itter, Greenhouse Assistant
Renee Wang, Accounts Payable Specialist
Noah Whitman, Laboratory Technician
Christopher Wilks, Intern
Naoia Williams, Receptionist/AP Clerk
Dahlia Wist, Greenhouse Manager
Adeline Wong, Intern
Todd Yecies, Intern
Joy Zhang, Intern
Pefen Zhang, Curator

1 From August 1, 2006, to June 15, 2007
2 From January 1, 2007
3 From June 1, 2007
4 From July 1, 2006, to September 30, 2006
5 From May 1, 2007
6 From May 1, 2007
7 From May 1, 2007
8 From February 1, 2007
9 To November 5, 2006
10 From August 1, 2006, to September 1, 2006
11 From May 1, 2007
12 From August 1, 2006
13 From September 21, 2006
14 To September 30, 2006
15 To October 16, 2006
16 From September 1, 2006, to December 31, 2006
17 From December 18, 2006
18 From September 1, 2006
19 From November 22, 2006
20 From July 1, 2006, to December 31, 2006
21 From January 1, 2007
22 From May 1, 2007
23 To January 15, 2007
24 To July 31, 2006
25 From May 1, 2007
26 To April 30, 2007
27 From September 16, 2006
28 To August 23, 2006
29 To August 25, 2006
30 From July 10, 2006, to June 30, 2007
31 To June 19, 2007
32 To September 30, 2006
33 From September 5, 2006
34 To November 30, 2006
35 From February 16, 2007
36 From March 16, 2007, to April 18, 2007
37 From December 1, 2006, to January 31, 2007
38 From July 1, 2006
39 To October 20, 2006
40 From November 1, 2006, to May 15, 2007
41 From July 1, 2006
42 From September 25, 2006
43 To September 30, 2006
44 From October 18, 2006, to November 19, 2006
45 From November 20, 2006
46 From September 30, 2006
47 From University 2006
48 From January 8, 2007
49 To September 30, 2006
50 To August 4, 2006
51 To March 14, 2007
52 To December 31, 2006
53 From May 30, 2007
54 From September 30, 2006
55 From September 30, 2006
56 From September 30, 2006
57 From September 30, 2006
58 To October 31, 2006
59 To October 22, 2006
60 From December 1, 2006
61 From October 10, 2006
62 From August 1, 2006
63 From May 16, 2007
64 To September 30, 2006
65 To September 30, 2006
66 From February 12, 2007
67 To July 21, 2006
68 To June 30, 2007
69 From March 1, 2007
70 From June 20, 2007
71 From June 5, 2007
72 To October 20, 2006
73 To July 17, 2006
74 To July 12, 2006
75 To August 27, 2006
76 From August 28, 2006
77 From October 18, 2006
78 To February 14, 2007
79 To September 6, 2006
80 From November 30, 2006
81 To November 7, 2006
82 To April 23, 2007
83 From February 5, 2007
84 To April 23, 2007
85 From November 22, 2006
86 From November 22, 2006
87 From June 11, 2007
Terrestrial Magnetism

Research Staff Members
L. Thomas Aldrich, Emeritus
Conel M. O’D. Alexander
Alan P. Boss
R. Paul Butler
Richard W. Carlson
John E. Chambers
John A. Graham, Emeritus
Erik H. Hauri
David E. James
Alan T. Linde
Larry R. Nittler
I. Selwyn Sacks
Sara Seager
Steven B. Shirey
Paul G. Silver
Hannah Jang-Condell, NASA Astrobiology Institute Fellow
Mercedes López-Morales, Carnegie Fellow
Isamu M. Matsuyama, Richard B. Roberts Fellow
Lan-Anh Nguyen, Scott E. Forbush Fellow
Julie A. O’Leary, Carnegie Fellow
Thomas G. Ruedas, NASA Associate
Brian K. Savage, Carnegie Fellow
Ivan P. Savov, Carnegie Fellow
Scott S. Sheppard, Hubble Fellow
Taka’aki Taira, C. V. Starr Fellow and NSF Associate
Margaret C. Turnbull, NASA Astrobiology Institute Research Associate
Lara S. Wagner, Harry Oscar Wood Fellow
Linda M. Warren, NSF Associate
Dayanthie S. Weeraratne, NSF Associate and NASA Associate

Senior Fellow
Vera C. Rubin

Postdoctoral Fellows and Associates
Alceste Z. Bonanos, Vera C. Rubin Fellow
Hammer Busemann, NASA Associate
Fred J. Ciesla, Carnegie Fellow and NASA Astrobiology Institute Fellow
Catherine M. Cooper, Harry Oscar Wood Fellow
John H. Debes II, NASA Associate and Space Telescope Science Institute Associate
Hannah Jang-Condell, NASA Astrobiology Institute Fellow
Maureen D. Long, Carnegie Fellow, NSF Associate, and NASA Associate
Mercedes López-Morales, Carnegie Fellow
Isamu M. Matsuyama, Richard B. Roberts Fellow
Lan-Anh Nguyen, Scott E. Forbush Fellow
Julie A. O’Leary, Carnegie Fellow
Thomas G. Ruedas, NASA Associate
Brian K. Savage, Carnegie Fellow
Ivan P. Savov, Carnegie Fellow
Scott S. Sheppard, Hubble Fellow
Taka’aki Taira, C. V. Starr Fellow and NSF Associate
Margaret C. Turnbull, NASA Astrobiology Institute Research Associate
Lara S. Wagner, Harry Oscar Wood Fellow
Linda M. Warren, NSF Associate
Dayanthie S. Weeraratne, NSF Associate and NASA Associate

Predoctoral Fellows and Associates
Lindsey S. Chambers, University of California, Santa Cruz
Ben A. A. Hood, University of St. Andrews, UK

Research Interns
Sapthala Karalliyadda, University of Peradeniya, Sri Lanka
Amanda Klaus, Scripps College
Meredith Langstaff, University of Chicago
Ana Maria Molina, Universidad Pontificia Bolivariana, Colombia
Elizabeth Monahan, University of Massachusetts, Amherst
Sonali Shukla, Vanderbilt University
Erica Staeling, Bucknell University
Max Zinner, Mary Institute and St. Louis Country Day School

Supporting Staff
Michael J. Acierino, IT/IS Manager/Systems Engineer
Maceo T. Bacote, Building Engineer
Richard L. Bartholomew, Machinist, Instrument Maker
Gary A. Bors, Building Engineer
Alicia R. Case, Administrative Assistant
Michael J. Crawford, Machinist, Instrument Maker
Roy R. Dingus, Facility Manager
Janice S. Dunlap, Assistant to the Director
Pablo D. Esparza, Maintenance Technician
Steven Golden, Field Seismologist
Shaun J. Hardy, Librarian
Mary F. Horan, Geochemistry Laboratory Manager
Sandra A. Keiser, Scientific Computer Programmer/Systems Manager
William E. Key, Building Engineer
Michelle B. Martin, Administrative Assistant
P. Nelson McWhorter, Senior Instrument Maker, Shop Manager
Timothy D. Mock, Mass Spectrometry Laboratory Manager
Fabian E. Moscoso, Building Engineer Apprentice
Ben K. Pandit, Electronics Laboratory Manager
Daniela D. Power, Geophysical Research Assistant
Pedro J. Roa, Maintenance Technician
Brian P. Schleigh, Electronic Design Engineer
Terry L. Stahl, Fiscal Officer
Jianhua Wang, Ion Microprobe Research Specialist
Tao (Kevin) Wang, Fiscal Assistant
Merri Wolf, Library Technical Assistant

Visiting Investigators
Mark D. Behn, Woods Hole Oceanographic Institution
Craig R. Bina, Northwestern University
Ingi Th. Bjarnason, Science Institute, University of Iceland
Maud Boyet, Université de Saint-Etienne, France
Jay A. Brandes, Skidaway Institute of Oceanography
Kevin C. Burke, University of Houston
James Y.-K. Cho, University of London
Ines L. Cifuentes, CASA of Maryland
Roy S. Clarke, Jr., Smithsonian Institution, National Museum of Natural History
Clinton P. Conrad, The Johns Hopkins University
Dale P. Cruikshank, NASA Ames Research Center
Lucy M. Flesch, Purdue University
Matthew J. Fouch, Arizona State University
Stephen S. Gao, Kansas State University
Harry W. Green, II, University of California, Riverside
William E. Holt, State University of New York, Stony Brook
Emilie E. Hooft Toomey, University of Oregon
Bruce M. Jakosky, University of Colorado
Catherine L. Johnson, Scripps Institution of Oceanography
Karl Kehm, Washington College
DEPARTMENT OF TERRESTRIAL MAGNETISM

Christopher R. Kincaid, University of Rhode Island
Carolina Lithgow-Bertelloni, University of Michigan
Patrick J. McGovern, Lunar and Planetary Institute
Harold J. Morowitz, George Mason University
Elizabeth J. Myhill, Marymount University
Fenglin Niu, Rice University
Derek C. Richardson, University of Maryland
L. Jeremy Richardson, NASA Goddard Space Flight Center
Stephen H. Richardson, University of Cape Town
Paul A. Rydelek, University of Memphis
Martha K. Savage, Victoria University, New Zealand
Maria Schönbachler, Imperial College London
Alison M. Shaw, Woods Hole Oceanographic Institution
Yang Shen, University of Rhode Island
David W. Simpson, Incorporated Research Institutions for Seismology
J. Arthur Snoke, Virginia Polytechnic Institute and State University
Erik O. Sturkell, University of Iceland

Douglas R. Toomey, University of Oregon
Nathalie J. Valette-Silver, National Oceanic and Atmospheric Administration
Suzan van der Lee, Northwestern University
John C. VanDecar, Nature Magazine, UK
Elisabeth Widom, Miami University, Ohio
Cecily J. Wolfe, University of Hawaii

1 To December 31, 2006
2 To December 31, 2006
3 From October 11, 2006
4 From January 3, 2007
5 From September 15, 2006
6 To August 15, 2006
7 To December 31, 2006
8 To November 15, 2006
9 To December 1, 2006
10 Joint appointment with Geophysical Laboratory
11 From August 1, 2006
EMBRYOLOGY

Cox, R. T., and A. C. Spradling, Milton controls the early acquisition of mitochondria by Drosophila oocytes, Development 133, 3371-3377, 2006.

Martinelli, D. C., and C.-M. Fan, Gas1 extends the range of Hedgehog activity by facilitating its signaling, Genes Dev. 21, 1231-1243, 2007.

Spradling, A. C., Learning the common language of genetics, Genetics 174, 1-3, 2006.

Xu, C., and C.-M. Fan, Allocation of paraventricular and supraoptic neurons requires Sim1 function: a role for a Sim1 downstream gene PlexinC1, Mol. Endocrinol. 21, 1234-1245, 2007.

GEOPHYSICAL LABORATORY

Here updated through Sept. 30, 2007. Reprints of the numbered publications are available, except where noted, at no charge from the Librarian, Geophysical Laboratory, 5251 Broad Branch Road, NW, Washington, DC 20015-1305 (e-mail: library@dtm.ciw.edu). Please give reprint number(s) when ordering. The list is regularly updated on the laboratory’s Web site (http://www.gl.ciw.edu/).

Bibliography
Carnegie Institution of Washington

3660 Mysen, B., Partitioning of calcium, magnesium, and transition metals between olivine and melt governed by the structure of the silicate melt at ambient pressure, Am. Mineral. 92, 844-862, 2007.

Observatories

Observatories

PLANT BIOLOGY

A reappraisal of the habitability of planets around M dwarf stars, Geophys. J. Int., 167, 1447-1460, 2006. (No reprints available.)

6357 Turnbull, M., Where is life hiding? Astronomy 34 (no. 10), 58-63, 2006. (No reprints available.)

One of the most effective ways of supporting the work of the Carnegie Institution of Washington is to include the institution in your estate plans. By making a bequest, you can support the institution well into the future.

A bequest is both a tangible demonstration of your dedication to the Carnegie Institution and a way to generate significant tax savings for your estate. Some bequests to Carnegie have been directed to fellowships, chairs, and departmental research projects. Some have been additions to the endowment, other bequests have been unrestricted.

The following sample language can be used in making a bequest to the Carnegie Institution:

“I give and bequeath the sum of $_________ (or % of my residuary estate) to the Carnegie Institution of Washington, 1530 P Street, N.W., Washington, DC 20005-1910.”

For additional information:

SEE THE CARNEGIE WEB SITE
http://www.ciw.edu/support

OR CALL
The Office of Advancement
202.387.6400

OR WRITE
Christine D. Smith
The Office of Advancement
Carnegie Institution of Washington
1530 P Street, N.W.
Washington, DC 20005-1910