<table>
<thead>
<tr>
<th>Former Presidents</th>
<th>Former Trustees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Charles L. Hutchinson, 1902–1904</td>
</tr>
<tr>
<td></td>
<td>Walter A. Jessup, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Frank B. Hewitt, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>George F. Hewitt, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Antonia Ax:son Johnson, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William F. Kieschnick, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Samuel P. Langley, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Kenneth G. Langone, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Charles A. Lindbergh, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William Lindsay, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Henry Cabot Lodge, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Alfred L. Loomis, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Robert A. Lovett, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Seth Low, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Wayne MacVeagh, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William McChesney Martin, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Keith S. McHugh, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Andrew W. Mellon, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>John C. Merriam, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>J. Irwin Miller, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Margaret Carnegie Miller, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Roswell Miller, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Darius O. Mills, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>S. Weir Mitchell, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Andrew J. Montague, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Henry S. Morgan, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William W. Morrow, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Seeley G. Mudd, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Franklin D. Murphy, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William I. Myers, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Garrison Norton, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Paul F. Orefice, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William Church Osborn, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Walter H. Page, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>James Parmelee, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William Barclay Parsons, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Stewart Paton, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Robert N. Penney, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>George W. Pepper, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Richard S. Perkins, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>John J. Pershing, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Henning W. Prentis, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>H. Percy Rickett, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Gordon S. Rentschler, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Sally K. Ride, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Elihu Root, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Elihu Root, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Julius Rosenwald, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William M. Roth, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William W. Rubey, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Martin A. Ryerson, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Howard A. Schneiderman, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Henry R. Shepard, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Theobald Smith, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>John C. Spooner, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William Benson Storey, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Richard P. Strong, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Charles P. Taft, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William H. Taft, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William S. Thayer, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Juan T. Trippe, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Hatim A. Tyabji, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>James W. Wadsworth, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Charles D. Walcott, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Frederic C. Walcott, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Henry P. Walcott, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Lewis H. Weed, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>William H. Welch, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Gunnar Wessman, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Andrew D. White, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Edward D. White, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Henry White, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>James N. White, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>George W. Wickersham, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Robert E. Wilson, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Robert S. Woodward, 1902–1913</td>
</tr>
<tr>
<td></td>
<td>Carroll D. Wright, 1902–1913</td>
</tr>
</tbody>
</table>
The Carnegie Institution of Washington was incorporated with these words in 1902 by its founder, Andrew Carnegie. Since then, the institution has remained true to its mission. At six research departments across the country, the scientific staff and a constantly changing roster of students, postdoctoral fellows, and visiting investigators tackle fundamental questions on the frontiers of biology, earth sciences, and astronomy.

“... to encourage, in the broadest and most liberal manner, investigation, research, and discovery, and the application of knowledge to the improvement of mankind . . .”
Carnegie Institution

TRUSTEES

Michael E. Gellert, Chairman
William I. M. Turner, Jr., Vice-Chairman
Deborah Rose, Secretary
Euan Baird
Daniel N. Belin
John C. Botts
William T. Coleman, Jr., Senior Trustee
Tom Cori
John F. Crawford
Edward E. David, Jr., Emeritus
John Diebold, Emeritus
W. Gary Ernst
Sandra M. Faber
Bruce W. Ferguson
Stephen P. A. Fodor
William K. Gayden
Robert G. Goelet
William T. Golden, Senior Trustee
William R. Hearst III
Richard E. Heckert, Emeritus
Kazuo Inamori, Emeritus
Suzanne Nora Johnson
Gerald D. Laubach, Senior Trustee
John D. Macomber, Senior Trustee
Steven L. McKnight
Burton J. McMurtry, Senior Trustee
Jaylee Mead
Frank Press, Senior Trustee
William J. Rutter, Senior Trustee
Robert C. Seamans, Jr., Emeritus
Maxine F. Singer
Frank Stanton, Emeritus
Christopher T. S. Stone
David F. Swensen
Charles H. Townes, Emeritus
Thomas N. Urban
Sidney J. Weinberg, Jr., Senior Trustee

PRESIDENT

Richard A. Meserve

DIRECTORS

Allan C. Spradling, Department of Embryology
Wesley T. Huntress, Jr., Geophysical Laboratory
Christopher Field, Department of Global Ecology
Wendy L. Freedman, The Crawford H. Greenewalt Chair, The Observatories
Christopher Somerville, Department of Plant Biology
Sean C. Solomon, Department of Terrestrial Magnetism

John J. Lively, Administration and Finance
Susanne Garvey, External Affairs
CONTENTS

THE PRESIDENT'S COMMENTARY 6
CARNEGIE FRIENDS 12
HONORS & TRANSITIONS 15
RESEARCH HIGHLIGHTS 17
FINANCIAL PROFILE & FINANCIAL STATEMENTS 44
PERSONNEL 64
BIBLIOGRAPHY 76
In many respects, the U.S. is at a crossroads. The nation faces divisive issues concerning Iraq, tax policy, budget priorities, health care, and many other matters. Some of the controversies involve science, including issues relating to intelligent design, stem cell research, and climate change. All of these matters deserve careful and thoughtful response. But in my view, there is one issue that is of singular importance because it affects the nation’s ability, either directly or indirectly, to respond to all of these matters. That issue is the capacity of the U.S. to harness science and technology to nurture continuing American success in the 21st century.

I shall focus here on this issue and its relation to the Carnegie Institution.

It can reasonably be argued that the human condition advanced more significantly over the 20th century than over the entire remainder of history. This change was due in large measure to significant scientific and technical accomplishments. The harnessing of electricity has allowed illumination during the night and provided clean energy for use in the home and at work. In fact, nearly 16% of the world’s electrical supply (20% in the U.S.) comes from nuclear fission, a form of energy that we did not even know existed at the turn of the 20th century. Automobile and aeronautical technology and highway development facilitated rapid transportation and have changed lifestyles around the globe. Water distribution and sanitation have provided safe and abundant drinking-water supplies that were unknown to our forebears. Medical advances have eradicated various diseases and substantially lengthened the average American’s life span. Agricultural mechanization and biotechnology have enhanced the food supply.
The revolution in electronics has fundamentally altered communications and changed the way we amuse and educate ourselves. The Internet has provided ready access to an enormous range of information from anywhere in the world with a few mouse clicks. In short, our lives are vastly different from those who lived only a century ago.1 The typical American has access to opportunities and capabilities that were beyond the reach, or even the imagination, of the wealthiest individuals in previous centuries. However, the treasure that science can yield is far from fully exploited; there is the promise of more startling change to come.

Progress notwithstanding, science and technology have also presented us with challenges. Technological advances, for instance, have created environmental problems—most notably, air and water pollution, as well as climate change. But science has simultaneously given us the capacity, if we have the will, to understand and limit adverse impacts. Any fair accounting of the balance sheet would show that science and technology have advanced the human condition far more than they have threatened it.

The U.S. has led the world in creating and implementing many of the past century’s technical developments, yielding an economic and strategic strength that is vastly disproportionate to our population. But there are problems on the horizon. Globalization is presenting a challenge to our position as a world leader. Jobs are flowing overseas to lower-wage skilled workers even, through modern communications, for service work.2 In technical fields in which the U.S. has long enjoyed an edge, we now face competition from countries such as China and India, which are growing quickly and whose workers’ skills are expanding rapidly.

Of course, we should welcome the improvement of standards of living around the globe that has accompanied these changes. Such advances serve humanitarian purposes in that they enable more people to escape poverty, hunger, and disease. Moreover, these advances also nurture a web of economic, political, and personal connections that can minimize distrust, enhance cumulative prosperity, and further the prospects for understanding and peace. Nonetheless, there is reason to worry about the future position of the U.S. in a world in which the technological advantage that we have long enjoyed is diminished. It is not inconsistent to hope for advances in the rest of the world while simultaneously seeking to maintain our role as a scientific and technological pathfinder and thereby to maintain our leadership position.

With the encouragement of several members of Congress, the National Academies established a committee to examine the challenge of ensuring a prosperous future for the U.S. The committee was chaired by Norman Augustine, the retired chairman and CEO of Lockheed Martin, and included numerous prominent members from the academic and business communities.3 Its report, \textit{Rising Above The Gathering Storm: Energizing and Employing America for a Brighter Economic Future}, includes a careful analysis of the role of science and technology in maintaining the vitality of the U.S., and sets out a number of actions that the U.S. should take to preserve its position as a global power.

In the face of growing scientific and technical capacities around the globe, the Augustine committee urged action to enhance K-12 science and mathematics education, to sustain science and engineering
research, to recruit the best and the brightest students to higher education in science and engineering, and to provide incentives for innovation. The report provides a clear, albeit very challenging, set of recommendations to protect our country’s future. As this is written, it remains to be seen if we have the political will, or the financial resources, to pursue the committee’s advice.

I shall focus on one recommendation that bears directly on the Carnegie Institution. The committee highlights the importance of strengthening the commitment to long-term basic research, noting that such work is “transformational,” in that it can yield sweeping change. The committee observes that the private sector cannot be expected to invest adequately in such basic research for many understandable reasons: the benefits may not be captured by the private sponsor, the work is risky, and shareholder pressure for short-term results discourages such long-term investments. There is a role for government support, but
the trends in government funding are not encouraging. Although federal support for research has grown in real terms over several decades, nearly all of the growth has been in the life sciences (Fig. 1). And, in the face of an expanding economy, federal support of research and development has declined as a percentage of U.S. gross domestic product by a factor of two over the course of several decades (Fig. 2). The current budget deficits make it difficult to respond to this situation. But, to preserve the nation’s future, the committee strongly recommends a very dramatic increase in investment in basic research.

The committee’s recommendation highlights an emphasis that has been the Carnegie Institution’s guiding purpose since our beginning over a century ago. Andrew Carnegie’s deed of trust provides that the institution “shall in the broadest and most liberal manner encourage investigation, research and discovery” and thereby enable “the application of knowledge to the improvement of mankind.” In defining the mission of the organization, Andrew Carnegie directed that it should “discover the exceptional man in every
department of study wherever and whenever found . . . and enable him to make the work for which he seems specially designed his life work.” Consistent with this philosophy, we have sought to nurture basic science that holds great promise, if successful, but that may be far from the mainstream because of the high risk of failure, the difficulty of the problem, or the need for extended effort before results can be obtained. It is exactly such work that is likely to lead to transformational change—to significant and startling advances. In short, the type of research that the Augustine committee concludes is of singular importance to the nation has been and will continue to be a hallmark of Carnegie’s scientific efforts.

Carnegie has a proud tradition in the pursuit of basic science, as a consideration of the work of Carnegie scientists reveals. Some of Carnegie’s researchers are well known:

- Edwin Hubble, who revolutionized astronomy with his discovery that the universe is expanding and that there are galaxies other than our own Milky Way;
- Charles Richter, who created the earthquake measurement scale;
- Barbara McClintock, who won the Nobel Prize for her early work on patterns of genetic inheritance;
- Alfred Hershey, who won the Nobel Prize for determining that DNA, not protein, harbors the genetic recipe for life;
- Vera Rubin, who was awarded the Presidential Medal of Science for her work confirming the existence of dark matter in the universe; and
- Andrew Fire, who with colleagues elsewhere opened up the world of RNA interference, which was acclaimed by Science magazine as the Breakthrough of the Year in 2002.

Many other Carnegie scientists continue work at the forefront of discovery. In the following pages of this Year Book, we sample some of the startling scientific advances from each of Carnegie’s departments over the past year. These examples give a flavor of the vibrancy of our institution.

As shown by the report of the Augustine committee, the research that Carnegie pursues is of a type that is central to the health of the nation. Although we can be only one participant in what must be a broad national effort, we will continue to strive to be an important contributor. Many exciting discoveries lie ahead. The best is yet to come for the Carnegie Institution, for the nation, and for the world.
The Carnegie Institution received gifts and grants from the following corporations, foundations, individuals, government agencies, and other sources during the period July 1, 2004, to June 30, 2005.

Foundations and Corporations

$1 MILLION OR MORE
- The Weathertop Foundation

$100,000 TO $999,999
- Fannie Mae Foundation
- Gayden Family Foundation
- The Hearst Foundation, Inc.
- The Humana Foundation
- Ambrose Monell Foundation
- The David and Lucile Packard Foundation
- The Ralph M. Parsons Foundation
- The Seaver Institute

$10,000 TO $99,999
- The Agouron Institute
- Carnegie Institution of Canada/Institution Carnegie du Canada
- Clark Charitable Foundation
- Clark Construction Group, LLC
- Confidence Foundation
- The Genetics Society of America
- Golden Family Foundation
- Richard W. Higgins Foundation
- Howard Hughes Medical Institute
- Suzanne Nora Johnson and David G. Johnson Foundation
- Samuel H. Kress Foundation
- Richard Lounsbery Foundation, Inc.
- The G. Harold and Leila Y. Mathers Charitable Foundation
- The Prospect Hill Foundation
- The William and Nancy Turner Foundation
- Sidney J. Weinberg, Jr. Foundation

$1,000 TO $9,999
- The Baruch Fund
- Gloria and Sidney Danziger Foundation, Inc.
- Paul and Annetta Himmelfarb Foundation
- Robert W. and Gladys S. Meserve Charitable Trust
- Multimax, Inc.
- Pfizer Foundation Matching Gifts Program

WILLIAM R. HEWLETT

The legendary electronics inventor, cofounder of Hewlett-Packard Company, and National Medal of Science winner William R. (Bill) Hewlett was elected to the Carnegie board of trustees in 1971. After serving several years on the nominating committee, including a stint as its chairman, Hewlett was elected chairman of the board, a position he held from 1980 to 1986. Besides having a lifelong interest in science, Hewlett was a well-known philanthropist who advanced a variety of causes, setting a new standard for Carnegie giving during his tenure. His unprecedented generosity to Carnegie began in 1983, when he established a 10-year lead trust that resulted in $1 million each year thereafter for Carnegie science.

Over the years he became a champion of the Magellan telescope project. In 1989 he posed a $5 million challenge to the board of trustees to build the Magellan telescopes, renew the institution’s scientific infrastructure, and expand the endowment. The challenge was successfully met, with the rest of the trustees donating more than $10 million in less than five years.

Hewlett was an exceptionally modest person and insisted on anonymity. When members of the board and the entire Observatories staff asked for permission to name the first Magellan telescope the Hewlett telescope, he declined the offer with a plucky “nice try.”

Until his death in 2001, Hewlett made anonymous gifts to Carnegie totaling $18 million. Carnegie is deeply indebted to William Hewlett for his 16 years of active leadership, his unassuming style, and his unsurpassed generosity. The Hewlett family was appropriately awarded the Andrew Carnegie Medal of Philanthropy in 2005 for exceptional philanthropic generosity and stewardship.
Prince Charitable Trusts
Roxiticus Fund

UNDER $1,000
Yanofsky Family Revocable Trust

INDIVIDUALS
$1 MILLION OR MORE
Michael E. Gellert
Cary Queen

$100,000 TO $999,999
Philip H. Abelson
Stephen P. Fodor
Robert G. Goellet
Steven L. McKnight
Burton J. McMurtry
Jaylee Mead
Deborah Rose
Thomas N. Urban
Ladislaus von Hoffmann

$10,000 TO $99,999
Daniel N. Belin
Paul Berg
Diane Bernstein
Charles Bestor
Donald Brown
Tom Cori
John F. Crawford
Igor B. Dawid
John Diekman
Julie D. Forbush
L. Patrick Gage
Robert Hazen
Richard E. Heckert
Gershon Kekst
Paul N. Kokulis
Gerald D. Laubach
Lawrence H. Linden
Richard A. Meserve
Alvin E. Nashman

$1,000 TO $9,999
Paul A. Armond
David Baltimore
Giuseppe Bertani
Estate of Francis R. Boyd
James E. Burke
Anthony J. Cavalieri
Jo Ann Eder
Wallace G. Ernst
Sandra M. Faber

Marilyn Fogel
Pembroke J. Hart
William R. Hearst
John W. Holaday
Charles B. Hunter
Donald Kennedy
John D. Macomber
Marlow V. Marrs
James McClave
Robert Metcalf
Yasumi Ohshima
Joseph G. Perpich
Catherine A. Piez
Frank Press
Vera Rubin
Robert C. Seamans
Maxine F. Singer
Allan C. Spradling and
Connie Griffin
Malcolm S. Steinberg
David F. Swensen
Roselyne C. Swig
Scott B. Tollefson

UNDER $1,000
Judith C. Adams
Jagannadham Akella
Joseph P. Ardizzi
Robert Armstrong
Claudine C. Ator
Harry A. Bacas
Lawrence C. Baldwin
William G. Banfield
Manuel N. Bass
Walter E. Beach
Paul Bellaire
Bradley F. Bennett
Ingi T. Bjarnason
Daniel H. Borinsky
Montgomery S. Bradley
Jay A. Brandes
Barrett L. Brick
Winslow R. Briggs
Charles L. Brister
Peter C. Brockett
Harold Brodsky
Jeanette S. Brown
Patrick Browne
Allan B. Burdick
James E. Burke
Gordon Burley
David Burstein
Donald M. Burt
Peter R. Buseck

CARYL P. HASKINS

A man who sought “to touch the scientific revolution . . . to generous social purpose,” Caryl Parker Haskins had a life mission to promote the importance of scientific research, particularly through his half-century affiliation with the Carnegie Institution. In 1949 the board of trustees elected Haskins, a biophysicist who founded Haskins Laboratories, to the Carnegie board, where he served as a leader on the executive committee for seven years. Then in 1956 the board appointed him to the Carnegie presidency, succeeding Vannevar Bush. After 15 years at that post, Haskins continued to serve as a board member, first on the executive and nominating committees and later as trustee emeritus until his death in 2001.

When Haskins stepped down from the Carnegie presidency, the Washington Post characterized him as a renaissance man, with a “vast comprehensive knowledge across the whole spectrum of science.” Over the years, Haskins worked tirelessly to promote the philosophy of the institution; in his words to “search for scientific truth wherever it may lie, without primary consideration of its use in any practical sphere.” His generosity was expansive.

Understanding that scientific endeavor requires substantial, sustained financial support, he and his wife, Edna, became two of the most generous donors in the institution’s history, contributing more than $15 million during their lifetimes and through their estate. Carnegie is indebted to the vision, loyalty, and philanthropy of this great friend.
Carol L. Carpenter
Timothy J. Carr
Dana Carroll
James E. Case
Liang C. Chan
Asit Choudhuri
I. A. Chow
Michael P. Cohen
Greg Colello
John R. Coleman
John C. Cool
Jonathan Coopersmith
Salvator Cosentino
Harvey W. Crist
John R. Cronin
Daniel L. Crotty
Martin Czigler
Edward E. David, Jr.
J. Peter Davis
Howard M. Day
Spencer D. Day
Vincent J. De Feo
Peter de Jonge
Louis E. DeLanney
Robert C. DeVries
Bill Dickey
Richard V. Dietrich
John B. Doak
Bruce R. Doe
William H. Duncan
Donald N. Duvick
Frederick M. Feldheim
Raul Fernandez
John R. Ferraro
James S. Finucane
Dorothy R. Fischer
Maurice Flagg
Frederick Forro
Laurence W. Fredrick
Fred S. Fry
Gladys H. Fuller
Joseph H. Gainer
Esra Galun
Stephen Gao
Robert L. Gault
Domenico Gelleria
Susan Gerbi-McIlwain
Jane R. Geuder
Maureen Gidding
Alberto Giesecke M.
M. Charles Gilbert
Mary H. Goldsmith
Stephen M. Grant
F. Loyd Greer
Irene Grill
Philip M. Grimley
Marianne U. Gustafson
Necip Guven
Helen M. Habermann
William G. Hagar
Richard L. Hallberg
Stanley R. Hart
William K. Hart
Karl M. Hartmann
J. Woodland Hastings
Gordon S. Hawkins
Norris C. Hekimian
H. Lawrence Helfer
Margaret F. Hennessey
Michael A. Hensley
Donald L. Hersh
Henry P. Hoffstot
Anne M. Hofmeister
Wayne J. Hopkins
Satoshi Hoshina
Robert F. Howard
Edward Hurwitz
John Ingersoll
Jack C. James
Ernest G. Jaworski
William N. Jeffers
John F. Johnson
Ted J. Johnson
Hiroaki Kagawa
Basil Katem
Sandy Keiser
Charles E. Kohlhase
Gundolf H. Kohlmaier
Aik W. Kok
William E. Kopka
Olavi Kouvo
Audrey Krause
Ikouko Kushiro
Hans Laufer
Arthur Lalonde
Samuel A. Lawrence
Lavonne Lela
Alan I. Leshner
F. Hartan Lewis
Kathleen D. Lewis
Steven L’Hernault
Haifan Lin
Lanbo Liu
Joseph Q. Livingston
Felix J. Lockman
W. Richard Mancuso
Sidney Marantz
Chester B. Martin
Peter Mason
Mabel B. Mattingly
David Mauriello
Mary M. McNamara
Stanley A. Mertzman
Dennis F. Miller
Lee J. Miller
Sachinath Mitra
Dominic J. Monetta
William B. Morrison
David J. Mossman
Gary G. Mrenak
Thomas A. Mueller
John R. Murphy
Jack E. Myers
Robert B. Neumann
Phillip Newmark
Frank Nicholson
Richard L. Nielsen
Robert A. Nilan
Peter J. Nind
Adrienne Nee
Noboru Oba
John G. Ormerod
R. Bryce Parry
Niels M. Pedersen
Nathaniel M. Pigman
Lucian B. Platt
John Prignano
Donald G. Rea
David J. Remondini
Philippe Reymond
Carl R. Robbins
Christopher Rubel
Lily Ruckstuhl
Raymond E. Ruth
Nadia M. Saad
Maarten Schmidt
Joyce R. Schwartz
Martin G. Seitz
Constantinos E. Sekeris
Nobumichi Shimizu
Eli C. Siegel
Virginia B. Sisson
Jay B. Snell
James A. Soles
Richard H. Solomon
Erich Steiner
David B. Stewart
Linda Stryker
Alan M. Stueber
Kanenori Suwa
Kathleen Taimi
Gary R. Tanigawa
Mack Taylor
Thomas M. Tekach
Ian Thompson
Norbert Thomann
Peter A. Tinsley
Michael Tobias
Charles H. Townes
Thomas A. Tracy
Larry N. Vanderhoef
W. Karl VanNewkirk
Arthur H. Vaughan
David Velinsky
Shirley Venger
Daniel J. Vitiello
Richard J. Walker
Wayne H. Warren
Johannes Weertman
George Wetherill
Edward White
Gilbert F. White
Robert White
W. Dexter Whitehead, Jr.
Fredrick P. Woodson
Kenzo Yagi
Shaoyi Yan
Violet K. Young
Timothy A. Zimmerlin

Government

OVER $1 MILLION
National Aeronautics and Space Administration
National Science Foundation
U.S. Department of Energy
U.S. Public Health Service

$100,000 TO $1 MILLION
National Oceanic and Atmospheric Administration
Space Telescope Science Institute
U.S. Office of Naval Research

Other

$100,000 TO $1 MILLION
Institute of Earth Sciences, Academia Sinica
International Human Frontier Science Program
HONORS

Former Carnegie president and current trustee Maxine Singer was named the winner of the 2004 AAAS Philip Hauge Abelson Prize.

Trustee emeritus Charles Townes received the Templeton Prize for advocating the “convergence of science and religion.”

Senior trustee Sidney J. Weinberg, Jr., was elected a fellow of the American Academy of Arts and Sciences.

Embryology

Staff member Joseph Gall received the Elsevier-SDB Lifetime Achievement Award from the Society for Developmental Biology in 2004.

Geophysical Laboratory

Geophysical Laboratory director Wesley Huntress, Jr., was made an associate member of the Royal Astronomical Society in February 2005 and in May was awarded an honorary doctorate at Brown University.

Ho-kwang (Dave) Mao won the Mineralogical Society of America’s Roebling Medal for 2005 and the 2005 Gregori Aminoff Prize in Crystallography “for pioneering research of materials at ultrahigh pressures and temperatures.”

Observatories

Staff astronomer Stephen Shectman won the 2005 American Astronomical Society’s Weber Prize for his contributions to astronomical instrumentation.

Senior research associate Barry Madore received a Group Achievement Award from NASA administrator Sean O’Keefe for his role on the Galaxy Evolution Explorer.
Plant Biology
Director Chris Somerville gave the 2004 Mendel Lecture at the Genetics Society in November. He was also elected a fellow of the AAAS in 2004.

Terrestrial Magnetism
Department director Sean Solomon was awarded the American Geophysical Union’s 2005 Harry H. Hess Medal for his “outstanding and influential scientific achievements in planetary science, seismology, and marine tectonics.” He was also awarded NASA’s Public Service Medal in 2004 for his role in the development of the Solid Earth Science Program.

Senior Fellow Vera Rubin was awarded an honorary Doctor of Science degree by Princeton University in May 2005.

Transitions
Chairman of London-based Botts & Company John C. Botts was elected to the Carnegie board of trustees in December 2004. Trustees Freeman A. Hrabowski III and Hatim A. Tyabji stepped down as board members this past year.

Two new staff members, Alex Bortvin and Steven Farber, joined the Department of Embryology in 2004.

Former staff associate Seung Rhee was appointed staff member at Plant Biology and Dan Kelson was appointed staff associate at the Observatories.
Cracking the Code in Cell Communication

From the first spark of conception, cells talk to each other to ensure that tissue development stays on course and diseases such as cancer are kept at bay. Scientists in the Chen-Ming Fan lab at the Department of Embryology recently found an entirely new way this communication works. Their discovery could boost the understanding of how stem cells renew themselves and how cancer forms. It has also received enormous attention from the biological community because it calls into question how many cell communication pathways there are and how distinctive they may be.

Tissue development involves communication among cells by way of complex molecular relays. A molecule sent from one cell interacts with a surface receptor on a second cell. That receptor relays information to a molecule inside the target cell, which passes the information on to yet another molecule (and so on) until the information gets to the nucleus, where a gene is turned on that will tell the cell what tissue to become—bone, muscle, brain, etc. Remarkably, researchers have identified only seven or eight “signaling pathways” that control tissue development in all bilateral animals. And until recently, the pathways were thought to be distinct.

Predoctoral associate Alice Chen, with staff member Chen-Ming Fan and colleagues, discovered an entirely new signaling pathway that appears to be a merger of parts of two other pathways that were believed to be completely independent.

Using skeletal muscles along the backs of embryonic mice, the researchers studied a family of proteins in a pathway called Wnt. The Wnt pathway is important to early embryonic development, stem cell renewal, and tumor growth. The Wnt protein is a ligand—a molecule that binds to a receptor at the surface of a target cell and initiates the relays inside that cell. The team explored the molecules inside the target cell that are involved in turning on the muscle-making genes.

The scientists performed a variety of tests, including a novel technique of infecting mouse embryos with defective forms of two molecules to see how development was affected and to verify which molecules were at work. The researchers found a well-known gene transcription factor—a protein in the nucleus, which begins the process of turning genes on—called CREB near the end of the Wnt pathway. They were surprised because CREB is typically classified in an entirely different signaling chain. They were then able to identify other molecules in the progression, which also turned out to be typically associated with CREB. One of those is a catalyst outside the nucleus called adenylyl cyclase. Another is the molecule PKA, which enters the nucleus and prompts CREB into action.

The discovery that Wnt initiated a cascade that ended with CREB was a surprise to the researchers and the bio-
logical community. The Fan lab will be further examining how this newly discovered pathway affects stem cells in muscle-cell regeneration in the adult.

A Genetic Traffic Cop Directs Protein and RNA

Every cell has a traffic system that would astound the most accomplished city planner. RNA and proteins crowd the streets of these microscopic metropolises, rushing to work at particular locations within the cell. Much like human travelers, these biochemical commuters need signals to help them navigate efficiently. James Wilhelm of Carnegie’s Department of Embryology has discovered a gene that helps direct traffic in the eggs of the fruit fly, *Drosophila melanogaster*. More importantly, this gene may provide the first known connection between two very different cellular traffic patterns.

Wilhelm and his collaborators found that the gene, which they named *trailer hitch* (*tral*), is required to move some key developmental proteins. Their results also suggest that *tral* helps move messenger RNAs—molecules that carry genetic messages from DNA to the cell’s protein factories. Until now, scientists believed that these two processes were completely independent.

The movement of proteins to the cell surface depends largely on two protein-processing structures, the endoplasmic reticulum (ER) and the Golgi apparatus, which combine to make a convoluted network of membranes
Inside the cell, proteins shuttle through a convoluted network of membranes and channels, including the endoplasmic reticulum (ER) and the Golgi apparatus. But in tral mutants, the sites where traffic leaves the ER for the Golgi become muddled by large lumps of mismanaged proteins. These ER exit sites, stained green and marked by arrows, are abnormally large in mutant egg chambers (B) compared with the wild, or normal, chambers (A).

Wilhelm’s results also suggest tral mutants have trouble moving at least one other key developmental protein, a growth factor called “yolkless,” from the ER exit sites. Yolkless proteins are normally spread evenly throughout the cell, where they help bring yolk nutrients into the egg. But in tral mutants, yolkless proteins collect in lumps much like the Gurken lumps.

Wilhelm’s team sequenced tral and found that it bears a striking resemblance to genes that code for RNA-processing proteins. The surprised researchers explored the possibility of a functional link between tral and RNA, and found that tral’s protein forms part of an RNA/protein complex that helps process and shuttle messenger RNAs throughout the cell.

By examining tral in fruit fly egg cells, Wilhelm and his collaborators have established the first link between protein shuttling and messenger RNA processing. Once believed to be separate phenomena, it now looks like these two freeways share at least one interchange.

and channels. Proteins shuttle between these two structures and through the entire cell in small membrane sacs. But in fruit fly eggs with a mutant tral gene, this process doesn’t quite work as it should: the ER exit sites—where traffic leaves for the Golgi—become muddled by large lumps of mismanaged proteins.

One of the proteins trapped in these lumps, called Gurken, normally helps distinguish the top side from the bottom as the egg develops into an embryo. With the Gurken proteins tied up in these lumps a proper top-to-bottom pattern is never established, and the embryo dies early.
Star Trek Technology Comes Alive

The Star Trek crew in the popular TV show of yesteryear used a lightweight device called a tricorder to detect the presence of life on other worlds, as well as pathogens and contaminants that could harm the humans or their craft. Now Jake Maule, Andrew Steele, and the MASSE team at the Geophysical Laboratory (GL) have successfully field-tested a precursor to the tricorder that they, along with Charles River Laboratories and the LOCAD group at Marshall Space Flight Center, have been developing over the past few years. The device, frequently referred to as a lab-on-a-chip, will be permanently installed on the International Space Station beginning in 2006 to identify microbes hazardous to astronaut health. A future adaptation of the instrument is slotted to fly the European Space Agency’s ExoMars mission to the Red Planet in 2013 to search for evidence of life.

In addition to its handy size, the lab-on-a-chip cuts sample analysis time from about two to three days in a typical lab to some 10 minutes. Samples are also assessed in the field immediately upon collection. A researcher prepares a sample in an aqueous solution and introduces it into a small plastic cartridge, which slides into a slot of the tiny lab. The lab unit incubates the sample in the cartridge with a chemical preparation that turns yellow in the presence of microorganisms. The intensity of the yellow color is proportional to the number of microbes in the sample.
tests with flying colors. Meanwhile Steele, with team members, tested the small lab in the frozen environment of Svalbard, Norway—an area with a geology that is analogous to Martian geology. They successfully detected living organisms—the kind of evidence that will be sought on Mars. They were also able to maintain sterile sampling procedures and avoid contamination—a real challenge in the field.

Currently in development is a unit that will determine the chemical signature of a sample and compare it with 100s to 1000s of chemical signatures of known molecules or pathogens that are stored in the unit’s memory. A description of the sample then pops up on the LCD display. The team has been developing the library and testing the implement’s accuracy over several years. This summer the minilab was subjected to the rigors of extreme environments to mimic future space missions.

Jake Maule joined a NASA Desert Research and Technology Studies (RATS) team at Meteor Crater in Arizona to see how the device performed in heat and dust, and to train fully suited astronauts in the use of the system. He, Charles River’s Norm Wainwright, and GL staff member Marilyn Fogel also took the minilab aloft in a NASA KC-135 aircraft to see how it worked under conditions of microgravity (0g), lunar gravity (0.16g), and Martian gravity (0.38g). The minilab passed the tests with flying colors. Meanwhile Steele, with team members, tested the small lab in the frozen environment of Svalbard, Norway—an area with a geology that is analogous to Martian geology. They successfully detected living organisms—the kind of evidence that will be sought on Mars. They were also able to maintain sterile sampling procedures and avoid contamination—a real challenge in the field.

Meteorites—Historians of the Solar System

Scientists are one step closer to understanding how our solar system formed by studying the most primitive objects around—carbonaceous chondrite meteorites. They are emissaries from a long-gone era in the earliest
solar system and contain clues, in the form of their carbon, which can reveal the temperatures, pressures, and other chemical processing that occurred as the interstellar medium coalesced into the solar system billions of years ago. A challenge to understanding these meteorites, however, has been the establishment of the chemical signatures of specific reactions that altered the parent body, such as an asteroid, and meteorite over time. The Geophysical Laboratory’s George Cody and colleague Conel Alexander of the Department of Terrestrial Magnetism are the first to decipher and compare the chemical constituents of four meteorites from distinct groups and relate these chemical differences to their processing histories. The evidence suggests that their organic matter shares a specific reaction pathway—important information for piecing together what happened in the dark reaches of time.

More than 70% of the organic matter in carbonaceous chondrites is insoluble. Insoluble organic matter (IOM) is difficult to break down and analyze by standard molecular methods. But Cody and Alexander have overcome this hurdle using solid-state nuclear magnetic resonance (NMR) spectroscopy, which reveals molecular information when certain atomic nuclei, aligned by an enormous magnetic field and irradiated with radio-frequency pulses, resonate with characteristic frequencies. The researchers undertook a painstaking analysis of samples from four meteorites—EET92042 (CR group), Orgueil (CI group), Murchison (CM group), and Tagish Lake (a unique group). With a custom-designed procedure developed by Terrestrial Magnetism’s Fouad Tera, they extracted the IOM and used a protocol including eight different 1H and 13C NMR measurements to verify the hydrogen and carbon molecular environments.

The scientists found remarkable variation in the chemical composition of IOM across the meteorite

The carbonaceous chondrite meteorite Allende (near left) exhibits the dark fusion crust formed during atmospheric heating. The mottled white and light gray interior is pristine meteorite, with various mineral phases and very little extraterrestrial organic carbon. The vial contains about 400 milligrams of extracted, pure insoluble organic matter from a carbonaceous chondrite. It records history from before the formation of the solar system.
groups. The proportion of aromatic carbon increased significantly from the CR to Tagish Lake, and there was a parallel increase in the abundances of tiny nanodiamonds, vestiges of ancient stars. With multiple NMR experiments, the researchers showed that the increase in aromatic carbon was due to a loss of other forms of carbon—crucial evidence for a low-temperature, chemical-oxidation reaction in the meteorite parent body. They suspect the oxidant is hydrogen peroxide, a likely component of interstellar ices. It appears that the CR meteorites contain the most primitive organic matter. The material is very complex; rich in hydrogen, oxygen, and nitrogen that must have formed from small molecules synthesized in the interstellar medium—evidence that extraterrestrial organic matter is older than the solar system.

Nurture Beats Nature in Diamond Making

A team at the Geophysical Laboratory (GL) is surpassing Mother Nature by breaking speed, size, and strength records to lead the world in diamond making. The team, led by research scientist Chih-Shiue Yan and staff member Russell Hemley, has produced 10-carat, half-inch-thick, single-crystal diamonds at a rate of 100 microme-

Hikaru Yabuta, a new Geophysical Laboratory postdoctoral fellow, works with George Cody and Conel Alexander. Here she is making adjustments before starting solid-state nuclear magnetic resonance (NMR) analysis of meteoritic organics. The silver cylinder at left contains an enormous magnet for sample analysis.
ters per hour using its patented chemical vapor deposition (CVD) process. It has also made colorless, single-crystal diamonds that are transparent from the ultraviolet to infrared wavelengths, and it has fabricated new shapes from blocks of the CVD single crystals.

The 10-carat diamond is about five times the size of commercially available diamonds produced by the conventional methods, typically the high-pressure/high-temperature (HPHT) technique. Although the ultimate goal is to produce extremely large diamonds for instrumentation to maintain GL’s leadership in high-pressure research, the new breakthroughs have broad applications that could include a new generation of semiconductors.

The team’s CVD process begins with a seed diamond placed in a specially designed chamber. The seed is subjected to a gas mixture consisting mainly of methane and hydrogen and then bombarded with intense microwaves to make charged particles, or plasma. A carbon “rain” falls on the seed, and the carbon atoms arrange themselves in the proper crystalline structure, resulting in the growth of the diamond. The scientists can also subject the diamonds to high temperatures and pressures, hardening the crystals and further improving the clarity.

Large, transparent, and high-purity diamonds are especially valuable. These characteristics are particularly challenging and costly to produce with traditional methods. The Carnegie team has overcome these obstacles with the aim of revolutionizing diamond making. The highest growth rate reached thus far is in excess of 300 micrometers per hour. The goal is to grow diamonds as large as 100 carats.

This colorless diamond (top) was cut from a 1-carat block created by the Geophysical Laboratory’s diamond-making team using its unique chemical vapor deposition (CVD) process.

This ½-inch, 5-carat diamond (bottom) came from a 10-carat block produced by the Carnegie CVD process. It is laser cut, inscribed, and partly polished.

IMAGES COURTESY CHIH-SHIUE YAN AND RUSSELL HEMLEY.
California Climate: Major Impacts on the Horizon

Greenhouse-gas emissions will have major impacts on California’s future, states a study in which Christopher Field participated. Field, Department of Global Ecology director, was part of a group of leading scientists from major institutions that investigated greenhouse-gas emissions in California, climate change, and the consequences on the agriculture and economy of the Golden State.

Using results from two of the latest-generation climate models, the team was the first to look at a broad range of impacts for a particular region and assess the sensitivity of the impacts to the future pattern of greenhouse-gas emissions at the global scale. The study showed that more frequent heat waves and dramatically reduced Sierra snowpack are in California’s future without aggressive near-term action to minimize greenhouse-gas emissions.

The amount of climate change in the state and the severity of its impacts strongly depend on the level of emissions of heat-trapping gases, such as carbon dioxide. Stanford/Carnegie Ph.D. students Elsa Cleland, Claire Lunch, and Kim Nicholas Cahill participated in the study, which compared an expected future climate with humans heavily using traditional fossil energy (the source of most of these heat-trapping gases) with a future climate in which people primarily use energy sources that do not emit heat-trapping gases. The results showed that both scenarios result in significant climate changes over the coming decades; but the amount of climate change could be cut by half, or more, if emissions were dramatically reduced.

All of the model simulations showed increased temperatures by midcentury. Even with lower emissions, heat waves, extreme heat, and heat-related human mortality in Los Angeles could double to quadruple by century’s end. The warming could be great enough for widespread impacts on agriculture.

Forest Destruction in Brazil Is Twice That of Previous Estimates

Until now it has been almost impossible to detect how much area is logged selectively under the forest canopy in Brazil or elsewhere. Global Ecology staff member Greg Asner led a new large-scale, high-resolution satellite study, which showed that when selective logging is taken into account, forest degradation in the Brazilian Amazon has been underestimated by half. The first-of-its-kind study also showed that there are far-reaching ecological impacts for the region and beyond.
The scientists used two different models—the low-sensitivity Department of Energy Parallel Climate Model (PCM) and the medium-sensitivity U.K. Met Office Hadley Centre Climate Model 3 (HadCM3)—to project future temperatures in California under lower (B1) and higher (A1fi) greenhouse-gas emission scenarios. The left series of images shows what the two models predict for winter temperatures with lower and higher emissions for the years 2070 to 2099. Depending on the model, summer temperatures at the end of the century (right) with higher emissions could rise by 8°F or 15°F, with increased warming in the north and northeastern parts of the state. As predicted by the two models, reducing emissions could result in temperatures increased by 4°F or 7°F.

Selective logging is a technique whereby loggers extract specific types of commercially valuable trees one by one from the fragile rain forest, while the forest canopy covers their tracks. Although it is relatively straightforward to use satellite data to estimate large-scale deforestation from clear-cutting, Asner’s group is the first to detect both the extent of selective logging in the Amazon and its impacts on the structure of the forest.

New remote sensing techniques, developed in Asner’s lab, are used for projects ranging from quantifying forest disturbance to identifying the chemical composition of forest canopies and undergrowth. Over five years of field-based studies, the scientists discovered that, annually, selective logging disturbs an area about the size of Connecticut (between 4,685 and 7,973 square miles) over the five states that account for 90% of all deforestation in the Brazilian Amazon. The destruction adversely impacts many plants and animals and increases erosion and fires. Additionally, up to 25% more carbon dioxide is released to the atmosphere each year, above that which would be
released by clear-cutting alone.

Along with technicians David Knapp, Paulo Oliveira, and Eben Broadbent, Asner developed the Carnegie Landsat Analysis System (CLAS) to penetrate the canopy by analyzing satellite imagery with advanced computational methods and corroborating the results with selected on-ground field studies. The researchers can now see what is happening from the top of the forest to the soil. The group is now using CLAS to map more than 7.7 million square miles (20 million km²) of forest.

The researchers are hopeful that their new techniques can be expanded to monitor logging in other tropical forest countries. One goal is to provide the satellite results to government officials in Brazil to help in enforcement of the laws that prohibit illegal logging.
“Tiny” Black Holes Discovered in “Tiny” Galaxies

Once thought a rarity, black holes—those extremely dense objects with a gravitational force so strong that not even light can escape—turn out to be quite common. In fact, supermassive black holes exist at the center of most large galaxies. Observatories astronomer Luis Ho, with Harvard graduate student Jenny Greene and University of California, Irvine, associate Aaron Barth, has discovered an entirely new population of these powerhouses—“tiny” black holes that reside in “tiny” galaxies. This discovery may help decipher the origin of their heavier counterparts. Ho thinks that small black holes were more common in the past and could be the “seeds” of their supermassive cousins.

Supermassive black holes have masses that range from millions to billions of Suns. Astronomers believe that somehow their formation and growth are integral to galaxy life cycles, particularly the central concentration of stars known as the bulge. Our Milky Way, a common spiral with a modest bulge, harvests a 3-million-solar-mass black hole. Hefty ellipticals and early-type spiral galaxies also have bulges, but late-type spirals and tiny dwarf galaxies do not. Every bulge has a black hole, and the mass of the black hole is proportional to the size of the bulge.

The Ho-led team found “miniquasars” in unlikely places: NGC 4395, a very late-type spiral galaxy with no bulge (A), and POX 52, a dwarf elliptical galaxy (B). Both of these objects, along with many others like them, were found to contain black holes in the previously unknown mass range of 10^4 to 10^6 Suns.
Ho asked: Do black holes require a bulge? Do galaxies without bulges—the smaller systems that make up the bulk of the galactic population—truly lack black holes? If black holes do reside in small, bulgeless galaxies, the galaxies would probably have masses from a thousand to a million Suns. These black holes are likely to be quite rare today, and current technology cannot detect their dynamical signature except among a handful of our nearest neighbors. People have looked, but to no avail.

The Ho-led team overcame this obstacle. They reasoned that small galaxies, with small black holes, should glow as miniquasars, signposts of the tremendous energy released as material falls into these gravitational pits. They combed through mountains of data from nearby galaxies and were the first to find the elusive signal indicating that small black holes reside in this bulgeless galaxy population.

Ho believes that small black holes could be seeds of supermassive black holes that could have coalesced through the hierarchical merging of galaxies over time. In the process, they would release tiny ripples of space-time—gravity waves—that physicists hope to detect in the coming decades.

Galaxy Formation: Top Down or Bottom Up?

Get out of town on a clear night and you can see into the heart of the Milky Way; millions of distant stars blend into a luminous band, while the closer stars form familiar constellations that march across the sky. The origin of large galaxies like the Milky Way is one of the great unsolved mysteries of astrophysics. One outstanding question is whether galaxies form “bottom up” from the gradual assembly of smaller building blocks, or “top down” from the collapse of large gas clouds that fragment into smaller star-forming clusters. Carnegie Observatories staff member Patrick McCarthy and his colleagues are bringing this conundrum into clearer focus.

The bottom-up model has prevailed over the past decade because it offers a good explanation for the distribution of galaxies. This scheme suggests that the most massive objects should be the youngest, because their assembly would have taken the most time. But astronomers have found that the most massive galaxies consist almost exclusively of old stars. It could be that the individual building blocks are old, while the galaxies themselves are young. To sort out the issue, scientists need to peer back in time to when massive galaxies were first formed.

While simple in concept, this effort has proven challenging in practice—the galaxies in question are faint, and most of their radiation has shifted to lower-energy, non-
visible infrared light. McCarthy’s team surmounted this challenge with an ambitious infrared study using the du Pont telescope at Carnegie’s Las Campanas Observatory. Their results were surprising—the young universe contained 50 to 100 times as many massive galaxies as the bottom-up model would predict. If these massive galaxies existed when the universe was relatively young, then they probably did not form from the gradual assembly of smaller building blocks.

Directly measuring the age of galaxies can help settle the matter. But determining a galaxy’s age, specifically that of its stars, is not easy. Conventional wisdom says that a galaxy’s hottest, most massive stars will die first, leaving cooler, less massive stars as the galaxy matures. It should therefore be possible to estimate a galaxy’s age by measuring the temperatures of its hottest stars. McCarthy and his team found many distant, massive galaxies composed of stars hotter than the Sun. These galaxies are also old, having formed only 1.5 to 3.5 billion years after the birth of the universe.

The formation of smaller galaxies is still best explained by the bottom-up model, but McCarthy’s work provides strong evidence that the most massive stellar systems formed early, and from the top down.
A Glimpse at Cellular Construction Crews

Much like buildings, plant cells have rigid walls to define their shape. These walls take many forms, from spiky, thornlike trichomes that fend off hungry bugs, to sausage-shaped guard cells that regulate the plant’s breathing pores. David Ehrhardt and colleagues at Carnegie’s Department of Plant Biology and Stanford University use groundbreaking imaging techniques to observe the proteins that create this array of shapes. They are the first to watch these molecular construction crews at work during cell growth. This important basic research has already revealed plants to be as dynamic and complex as their animal counterparts.

These proteins help plant cells work around a unique problem: unlike animal cells, plant cells have rigid walls and cannot easily change shape. Once they are in place, plant cells can only grow outward. To get it right the first time, plant cells rely on scaffolding made of microtubules—stiff rods made from a protein called tubulin. Microtubules constantly move and change shape as the cell wall pushes outward, but until now scientists knew very little about how the cell controls this process.

To get a closer look, Ehrhardt and collaborators fused
a tubulin gene from the model plant *Arabidopsis thaliana* with a fluorescent protein gene to express fluorescent tubulin protein. Using a specialized confocal microscope, they watched these proteins reorganize themselves in living cells. Ehrhardt found that microtubules move just under the surface of the cell, shortening at one end while lengthening at the other end. They do this one tubulin molecule at a time, in a process the researchers call treadmilling.

Treadmilling microtubules inevitably bump into stationary microtubules as they explore new territory in the cell. Instead of shoving past these obstacles, the growing fibers will often link up with the older ones and follow the same path. Ehrhardt believes this process, called bundling, helps the cell forge a strong, highly organized lattice from a random patchwork of microtubules.

Ehrhardt’s lab is searching for the molecules that guide treadmilling and bundling, and they have found a possible candidate: a protein called SPR1 that attaches to the growing end of treadmilling microtubules. Cells with nonfunctional SPR1 proteins grow in an abnormal spiral pattern, as does the entire plant. Although the exact function of the protein remains unknown, the spiraling defect suggests that SPR1 is a major player in either configuring microtubules or control-
Ehrhardt's lab plans to dig deeper into the engineering of plant cells. For example, they want to find other proteins that help guide treadmilling and bundling, and determine whether and how microtubules guide other construction processes in the cell. Recent work suggests that microtubules might directly guide construction of the cell wall. By snapping real-time imagery of tubulin molecules at work, Ehrhardt and his colleagues are helping to illuminate the structure and organization of plant cells.

Navigating a Genetic “Maize”

Plants, like animals, depend on specific genes to choreograph the dance of early development. But unlike animals, plants have two distinct generations, one with a single and one with a doubled set of chromosomes. Researchers in Matt Evans's lab at Carnegie's Department of Plant Biology are the first to locate and clone a gene in maize that plays a big role in both generations. The work may allow breeders to produce agriculturally useful varieties of maize, an economically significant crop, more quickly.

The gene is known to affect the embryo sac, the female version of the single-chromosome generation. When the sac combines with a pollen grain—the male version—the two form a seed with a double set of chromosomes. This fertilized seed produces the double-chromosome plant from which the next generation will arise.

Though Evans's group is not yet sure exactly what purpose the gene, called ig1, serves in the developing embryo sac, they do know what happens when the gene malfunctions. Embryo sacs with a mutated form of ig1 often produce defective seeds riddled with abnormalities, such as a shrunken endosperm (the starchy capsule that feeds the growing embryo) and multiple embryos. The embryo sacs can produce too many cells, some with too many nuclei crammed inside.

Other researchers have documented the effects of ig1 mutations, but Evans and his colleagues are the first to determine exactly where in the maize genome the ig1 gene actually resides. To find the locus among tens of thousands of possibilities, the researchers relied on a close cousin of maize: rice. Since maize and rice share much of their genetic order, and the entire genome sequence of rice is known, Evans's group used rice as a genetic roadmap to find ig1 in maize.
Evans and his colleagues are also the first to determine that \(\text{ig1} \) affects the double-chromosome generation as well as the single-chromosome generation. As it turns out, the gene's sequence is similar to a gene called \(\text{AS2} \) from \(\text{Arabidopsis thaliana} \), a plant commonly used in genetic studies. \(\text{AS2} \) controls aspects of double-chromosome generation development in \(\text{Arabidopsis} \), and it appears \(\text{ig1} \) serves a similar purpose in maize. Evans found evidence to support this idea in one of two distinct \(\text{ig1} \) mutations, called \(\text{ig1-mum} \). Plants with this mutant have misshapen leaves, much like \(\text{Arabidopsis} \) plants with mutated \(\text{AS2} \) genes. The \(\text{ig1-mum} \) variant also disrupts other vital developmental genes, just as mutant plants with mutated \(\text{AS2} \) genes. The \(\text{ig1-mum} \) variant also appears \(\text{ig1} \) serves a similar purpose in maize.

A Tale of Brains over Bran

To the casual observer, brain cells and plant cells might seem a world apart, but they actually share a lot in common. Wolf Frommer and Sakiko Okumoto, of Carnegie's Department of Plant Biology and Stanford University, have designed a way to track a substance called glutamate from brain to brain in real-time. They are the first to measure real-time glutamate changes in single living cells, which are required by both cell types. In fact, they are the first to measure real-time glutamate changes in single living cells, which are required by both cell types. They designed a way to track a substance called glutamate, a mammalian neurotransmitter required for a score of neuronal processes, from learning and memory to mood and perception. It is also vital for proper growth and development. Evans and his colleagues are also the first to determine glutamate is a mammalian neurotransmitter required for a score of neuronal processes, from learning and memory to mood and perception.
colored variants of green fluorescent protein (GFP), one cyan and one yellow, are genetically fused to opposite ends of a protein. When a metabolite such as glutamate binds to this biosensor, it changes the shape of the sensor’s backbone, altering the position of the fluorescent tags. When light of a specific wavelength activates the cyan tag, it begins to fluoresce. If the tags are close together, the cyan tag can then trigger the yellow tag to fluoresce.

The tags act like two musical tuning forks with a similar tone. Strike one and it begins to resonate; it can then cause the second to resonate, even if they do not touch.

Instead of sound, FRET tags produce and transfer fluorescent light when they vibrate. Frommer’s sensors have a genetic targeting sequence that places them on the cell’s outer surface, where the light they produce provides a sensitive, visible readout of glutamate release.

Frommer’s lab has also developed FRET sensors to monitor sugars like glucose, the source of metabolic energy for all cells. With these, they study glucose release from liver cells, a process that assures a constant energy supply to the brain and other organs.

The ability to track when, where, and how such chemicals behave can help answer many complicated questions in both animal and plant cell biology, and might one day help find a cure for debilitating diseases. With the methods developed in Frommer’s lab, researchers should be able to engineer FRET-tagged markers to monitor other metabolites, expanding the reach of this useful technique.
Terrestrial Magnetism
Understanding the Earth, Other Planets, and Their Place in the Cosmos

Closing In on Other Earths

The ultimate dream of planet hunters is to identify other worlds around nearby stars that potentially harbor life. This race to find life elsewhere in the galaxy has been heating up in recent years, and researchers at the Department of Terrestrial Magnetism (DTM) are leaders in the quest.

First Light Detected from an Extrasolar Planet

Most of the 150 or so known extrasolar planets have been discovered and studied through techniques such as finding the telltale wobble of a star induced by an orbiting planet, or the “blink” of a star as a planet passes in front of it. Using NASA’s Spitzer Space Telescope a team of astronomers, including DTM’s Sara Seager, have for the first time observed an extrasolar planet through the light it emits in the infrared. This success opens the way to study extrasolar planets’ temperatures and compositions.

The planet, HD 209458b, is a massive gaseous world that orbits very close to its parent star and is thus known as a hot Jupiter. Astronomers cannot yet see these planets in the visible part of the spectrum because the light from the star vastly outshines that from the planet. In the infrared, however, the planets show up more brightly and can more easily be detected. HD 209458b was discovered indirectly in 1999 and was later found to transit its star—as the planet passes in front of the star during orbit, the star dims. A planet that passes in front of its parent star also passes behind it. Using Spitzer, Seager and colleagues measured the combined infrared light of the planet and the star before the planet went out of sight behind the star. When the planet was out of view, they measured how much energy the star emitted on its own. The difference between those readings told them how much energy the planet gives off (at the measured wavelength). It is equivalent to a scorching 1570°F (1130 K). That temperature is key to refining atmosphere models created to infer the composition and infrared emissions of hot Jupiters.

Earth’s Bigger Cousin

DTM’s Paul Butler and team announced this summer the discovery of the smallest and most Earth-like extrasolar planet yet detected. The new ability to detect the tiny wobbles in the star from a small planet gives astronomers confidence that they will be able to find even smaller rocky planets at orbital distances more conducive to supporting life. The research was conducted at the Keck Observatory in Hawaii as part of the California and Carnegie Planet Search. The program is surveying the nearest 2,000 Sun-like stars and has found more than two-thirds of the 150 known planets, including the transit planet HD 209458b.
The newly discovered Earth-cousin orbits the star Gliese 876, located 15 light-years away in the direction of the constellation Aquarius. The scientists believe that the planet may be the first rocky planet ever found orbiting a star similar to the Sun. It is about seven and a half times as massive as Earth, with about twice the radius. At 0.021 astronomical units (AU), or 2 million miles from its parent star, it is much closer to its star than Mercury is to our Sun, and it makes an orbit in just under 2 days.

All of the other extrasolar planets discovered to date around Sun-like stars have been more massive than Uranus, an icy giant with about 15 times the mass of Earth. Although there is no direct proof that the new planet is rocky, its low mass would prevent it from retaining a huge gas envelope as Jupiter does. The researchers believe that its composition is probably like the inner planets of this solar system.

The planet’s proximity to the star results in a surface temperature between 400° and 750°F—too hot for liquid water and therefore incompatible for life to develop.

Gliese 876 is an M dwarf. M dwarfs are small red stars with less than half the mass of the Sun. They are the most common type of star in the galaxy. Very few Jupiter-mass planets have been found orbiting M dwarfs, but as measurement precision improves smaller planets have begun to emerge, suggesting a large population of Earth-mass planets. Because these stars are cooler and smaller than the Sun, the orbits on which a planet could sustain liquid water on its surface have periods from days to weeks. Precision Doppler monitoring is already capable of detecting such planets.
Research by Department of Terrestrial Magnetism’s Carnegie Fellow Maud Boyet and staff member Rick Carlson challenges the standard model of the geochemical evolution of the Earth. The work was cited by Science magazine as a runner-up breakthrough of the year for 2005. According to the standard model, the Earth’s mantle, the layer between the core and the crust, has been evolving gradually over Earth’s 4.5-billion-year history. These DTM geochemists have found, instead, that the mantle separated into chemically distinct layers within 30 million years of the solar system’s formation. Their work substantiates DTM director emeritus George Wetherill’s theoretical models of early terrestrial planet formation, where collisions between small, rocky planetesimals, bombardment of the growing planets by large bodies, and the energy released from short-lived radioactive elements created deep, churning magma oceans that cooled and crystallized early in the solar system’s history.

Boyet and Carlson analyzed isotopes contained in rock samples to understand the geochemical history and evolution of the Earth and other bodies in the solar system. Isotopes—atoms of an element with the same num-
ber of protons, but a different number of neutrons—exist naturally in different proportions and can be useful for determining conditions under which rock forms. Radioactive isotopes decay at a predictable rate and can reveal a sample’s age and when its chemical composition was established.

Earth formed from the collision and accretion of rocky bodies shortly after solid material began forming in the early solar system 4.567 billion years ago. The chemical composition of these building blocks is preserved today in primitive meteorites called chondrites. In the 1980s, scientists analyzed the ratio of isotopes of the rare Earth element neodymium in chondrites and various terrestrial rocks collected at or near the Earth’s surface and found that the samples shared a common composition. Researchers believed that this ratio remained constant from the time the Earth formed. Now, using a new-generation mass spectrometer, Boyet and Carlson found, surprisingly, that the terrestrial samples had an excess of the mass 142 isotope of neodymium (142Nd). 142Nd is the decay product of a now-extinct radioactive isotope of samarium (146Sm). The composition of the part of the Earth that has contributed melts to the surface over time diverged from that of the meteorites’ parent bodies within the first 30 million years after solar system formation (less than 1% of the age of the Earth), which was when 146Sm was decaying into 142Nd.

To explain the excess of 142Nd found in the terrestrial samples, the scientists conclude that rapid crystallization of Earth’s early magma ocean caused the mantle to separate into chemically distinct layers, one containing a high ratio of Sm to Nd, similar to that observed today in the mantle source of the volcanism along ocean ridges. The complementary reservoir, with low 142Nd abundance, has never been sampled at the surface and hence could now be deeply buried in the so-called D” layer at the very base of the mantle, above the core. This “missing” layer should be rich in the elements uranium, thorium, and potassium, whose long-lived radioactive decay would heat Earth’s interior. This hot layer above the core could...
In the conventional model of Earth history, the mixing caused by mantle convection erased this early chemical differentiation. The only chemical variation in the mantle is that caused by the formation of the continental crust, leaving the upper mantle (light blue) deficient in those elements concentrated in the crust (black), while most of the mantle is still similar in composition to the chondritic meteorites from which Earth accumulated.

The Boyet and Carlson result requires the Earth to have differentiated early, within 30 million years, leaving most of Earth’s mantle (light blue) depleted in those elements that prefer melts over crystallizing solids. The chemical complement to the depleted mantle could be small and quite enriched in radioactive elements, such as uranium and thorium; this complementary material may coincide with the seismically observed D” layer, located between the core and the mantle some 2700 km deep.

Images courtesy Maud Boyet.

help keep the outer core molten so that circulation of liquid iron can produce Earth’s magnetic field and instigate the hot plumes of upwelling mantle material that give rise to volcanically active islands, such as Hawaii.

Because lunar rocks have the same abundance of \(^{142}\text{Nd}\) as the terrestrial samples, the finding also adds to the evidence that the Moon formed from the Earth. Since Mars also experienced early melting, as indicated by the chemical and isotopic composition of Martian meteorites, the Boyet and Carlson work now links the Earth, Moon, and Mars and highlights the importance of early events in determining the chemical characteristics of the terrestrial planets.
This was a milestone year for the Carnegie Academy for Science Education (CASE), a program formed 11 years ago to instruct elementary school teachers from the District of Columbia Public Schools (DCPS) in the art of teaching science and mathematics. The long-term goal at CASE has been to turn much of the effort over to the CASE Mentor Teachers, who have been trained by the Carnegie staff over the years, so as to create a self-sustaining program and build capacity within DCPS. This goal was reached this year when 12 Mentor Teachers from the D.C. schools ran the four-week summer institute under the supervision of the CASE staff. For the first time, the Mentor Teachers organized and taught the highly successful and enjoyable approach to teaching science pioneered by CASE, an approach based on conducting scientific experiments while integrating mathematics and technology in the process.

Because of the school system’s increasing emphasis on science in secondary school, the CASE staff is moving on to this level. For 15 years the First Light Saturday science school has offered 15 to 20 third to sixth graders exposure to science through innovative hands-on experiments and field trips. Over the years, the students’ regular schools found that the First Light students were performing better than their peers. This success led principals to seek out CASE for teacher training in higher grades. This year CASE received funding from the D.C. State Education Office to improve teacher quality in middle school mathematics and science by helping teachers from public, charter, and parochial schools learn the unique CASE methods.

As part of this new initiative, CASE ran a two-week summer institute that focused on the field of astrobiology—a multidisciplinary approach to understanding the origins of life in the universe. The group, which included teachers of life sciences, Earth and planetary science, and mathematics, looked at questions that integrate these topics. In addition to learning through participating in experiments, the teachers visited the laboratories of Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism, whose scientists are affiliated with the NASA Astrobiology Institute. The instructors ended their course by developing lesson plans to implement in their own classrooms.

Drawing on its extensive expertise in molecular biology, the CASE staff also ran a new summer program in biotechnology for high school teachers and students. This course, in cooperation with the new D.C. McKinley Technology High School and the DCPS Office of Career and Technology Education, prepares students to work in biotech fields and teaches instructors how to present the curriculum. The staff is also working with the DCPS Central Office, area postsecondary schools, such as nearby Montgomery College and Catholic University, and
local “biotech industries,” including the National Institutes of Health and Walter Reed Army Medical Center, to develop an advanced technological education program to help teachers prepare students for careers in the burgeoning field of biotechnology.

First Light also graduated to middle school this year. Now every Saturday about 20 sixth through eighth graders from D.C. public and charter schools are immersed in entertaining and instructive laboratory science activities and take field trips throughout the Washington metropolitan area. As CASE and First Light mature, more and more individuals and institutions are becoming exposed to their unique educational techniques. From the very beginning, these programs have sparked curiosity and shown the uninitiated how science touches our lives every day, and how teachers can become classroom scientists along with their students.

Washington, D.C., middle school teachers receive training in the art of teaching hands-on science, mathematics, and technology at the Carnegie Academy for Science Education (CASE) 2005 summer session. Former Carnegie president Maxine Singer (left), founder of the program and senior scientific advisor for CASE, attends this session.

2005 marked the first year that the First Light Saturday science school opened its doors to middle school students.

First Light middle school students participate in field trips and collect samples as part of the curriculum.

IMAGES COURTESY TOBY HORN.
FINANCIAL PROFILE
& FINANCIAL STATEMENTS
The primary source of support for Carnegie Institution of Washington’s activities continues to be its endowment. This reliance has led to an important degree of independence in the research program of the institution. This independence is anticipated to continue as a mainstay of Carnegie’s approach to science in the future.

At June 30, 2005, the endowment was valued at over $635 million and had a total return (net of management fees) of 16.6%. The annualized five-year return for the endowment was 10.5%.

For a number of years, Carnegie’s endowment has been allocated among a broad spectrum of asset classes. This includes fixed-income instruments (bonds), equities (stocks), absolute return investments, real estate partnerships, private equity, and natural resources partnerships. The goal of diversifying the endowment into alternative assets is to reduce the volatility inherent in an undiversified portfolio while generating attractive overall performance.

In its private equity allocation, the institution accepts a higher level of risk in exchange for a higher expected return. By entering into real estate partnerships, the institution holds part of its endowment in high-quality commercial real estate, deriving both the possibility of capital appreciation and income in the form of rent from tenants. Along with the oil and gas partnership, this asset class provides an effective hedge against inflation. Finally, through its investments in absolute return partnerships and hedge funds, the institution seeks to achieve long-term returns similar to those of traditional U.S. equities with reduced volatility and risk.

The finance committee of the board regularly examines the asset allocation of the endowment and readjusts the allocation, as appropriate. The institution relies upon external managers and partnerships to conduct the investment activities, and it employs a commercial bank to maintain custody.
The above chart shows the allocation of the institution’s endowment among the asset classes it uses as of June 30, 2005.

Carnegie’s investment goals are to provide high levels of current support to the institution and to maintain the long-term spending power of its endowment. To achieve this objective, it employs a budgeting methodology that provides for:

- averaging the total market value of the endowment for the three most recent fiscal years, and
- developing a budget that spends at a set percentage (spending rate) of this three-year market average.

Since the early 1990s, this budgeted spending rate has been declining in a phased reduction, moving towards an informal goal of a spending rate of 4.5%. For the 2004-2005 fiscal year, the rate was budgeted at 5.10%. While Carnegie has been reducing this budgeted rate by between 5 and 10 basis points a year, there has also been continuing, significant growth in the size of the endowment. The result has been that, for the 2004-2005 fiscal year, the actual spending rate (the ratio of annual spending from the endowment to actual endowment value at the conclusion of the fiscal year in which the spending took place) was 4.29%.
Within Carnegie’s endowment, there are a number of “Funds” that provide support either in a general way or in a targeted way, with a specific, defined purpose. The largest of these is the Andrew Carnegie Fund, begun with the original gift of $10 million. Mr. Carnegie later made additional gifts totaling another $12 million during his lifetime. Together these gifts are now valued at over $563 million.

Principal Funds Under Active Investment Management

(Includes $635 million of endowment and other assets)

<table>
<thead>
<tr>
<th>Fund</th>
<th>FY 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Carnegie</td>
<td>$563,226,808</td>
</tr>
<tr>
<td>Mellon Matching</td>
<td>13,642,655</td>
</tr>
<tr>
<td>Astronomy Funds</td>
<td>12,133,834</td>
</tr>
<tr>
<td>Anonymous</td>
<td>8,830,089</td>
</tr>
<tr>
<td>Anonymous Matching</td>
<td>8,104,407</td>
</tr>
<tr>
<td>Capital Campaign</td>
<td>9,311,421</td>
</tr>
<tr>
<td>Wood</td>
<td>7,027,095</td>
</tr>
<tr>
<td>Golden</td>
<td>5,212,774</td>
</tr>
<tr>
<td>Science Education Fund</td>
<td>3,214,365</td>
</tr>
<tr>
<td>Colburn</td>
<td>2,166,880</td>
</tr>
<tr>
<td>McClintock Fund</td>
<td>2,030,893</td>
</tr>
<tr>
<td>Bush Bequest</td>
<td>1,580,437</td>
</tr>
<tr>
<td>Endowed Fellowships</td>
<td>1,643,670</td>
</tr>
<tr>
<td>Starr Fellowship</td>
<td>952,857</td>
</tr>
<tr>
<td>Roberts</td>
<td>541,551</td>
</tr>
<tr>
<td>Lundmark</td>
<td>397,745</td>
</tr>
<tr>
<td>Hollaender</td>
<td>307,675</td>
</tr>
<tr>
<td>Forbush</td>
<td>176,965</td>
</tr>
<tr>
<td>Hale</td>
<td>149,736</td>
</tr>
<tr>
<td>Green Fellowship</td>
<td>146,343</td>
</tr>
<tr>
<td>Harkavy</td>
<td>142,842</td>
</tr>
<tr>
<td>Endowed Obs positions</td>
<td>130,553</td>
</tr>
<tr>
<td>Total</td>
<td>$641,071,595</td>
</tr>
</tbody>
</table>
INDEPENDENT AUDITORS’ REPORT

The Audit Committee of the
Carnegie Institution of Washington:

We have audited the accompanying statements of financial position of the Carnegie Institution of Washington (Carnegie) as of June 30, 2005 and 2004, and the related statements of activities and cash flows for the years then ended. These financial statements are the responsibility of Carnegie’s management. Our responsibility is to express an opinion on these financial statements based on our audits.

We conducted our audits in accordance with auditing standards generally accepted in the United States of America. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are free of material misstatement. An audit includes consideration of internal control over financial reporting as a basis for designing audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of Carnegie’s internal control over financial reporting. Accordingly, we express no such opinion. An audit includes examining, on a test basis, evidence supporting the amounts and disclosures in the financial statements. An audit also includes assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall financial statement presentation. We believe that our audits provide a reasonable basis for our opinion.

In our opinion, the financial statements referred to above present fairly, in all material respects, the financial position of the Carnegie Institution of Washington as of June 30, 2005 and 2004, and its changes in net assets and its cash flows for the years then ended, in conformity with accounting principles generally accepted in the United States of America.

Our audits were made for the purpose of forming an opinion on the basic financial statements taken as a whole. The supplementary information included in the schedule of expenses is presented for purposes of additional analysis and is not a required part of the basic financial statements. Such information has been subjected to the auditing procedures applied in the audits of the basic financial statements and, in our opinion, is fairly presented in all material respects in relation to the basic financial statements taken as a whole.

November 29, 2005
Washington, D.C.
STATEMENTS OF FINANCIAL POSITION
June 30, 2005 and 2004

<table>
<thead>
<tr>
<th>Assets</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and cash equivalents</td>
<td>$186,133</td>
<td>518,726</td>
</tr>
<tr>
<td>Accrued investment income</td>
<td>196,512</td>
<td>99,044</td>
</tr>
<tr>
<td>Contributions receivable, net (note 2)</td>
<td>7,459,804</td>
<td>7,155,007</td>
</tr>
<tr>
<td>Accounts receivable and other assets</td>
<td>8,673,414</td>
<td>8,425,062</td>
</tr>
<tr>
<td>Bond proceeds held by trustee (note 6)</td>
<td>4,920,242</td>
<td>18,209,191</td>
</tr>
<tr>
<td>Investments (notes 3 and 14)</td>
<td>641,071,595</td>
<td>590,769,709</td>
</tr>
<tr>
<td>Property and equipment, net (notes 4, 5 and 6)</td>
<td>159,218,202</td>
<td>144,813,240</td>
</tr>
<tr>
<td>Total assets</td>
<td>$821,725,902</td>
<td>769,989,979</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liabilities and Net Assets</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liabilities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts payable and accrued expenses</td>
<td>$7,173,434</td>
<td>4,115,909</td>
</tr>
<tr>
<td>Deferred revenue (note 5)</td>
<td>34,914,748</td>
<td>34,695,018</td>
</tr>
<tr>
<td>Broker payable</td>
<td>204,718</td>
<td>—</td>
</tr>
<tr>
<td>Bonds payable (note 6)</td>
<td>64,710,315</td>
<td>64,670,359</td>
</tr>
<tr>
<td>Accrued postretirement benefits (note 8)</td>
<td>15,625,000</td>
<td>13,670,000</td>
</tr>
<tr>
<td>Total liabilities</td>
<td>122,628,215</td>
<td>117,151,286</td>
</tr>
</tbody>
</table>

Net assets (note 9):		
Unrestricted:		
Invested in property and equipment, net	66,792,849	63,657,053
Held for managed investments	524,262,300	491,619,513
Undesignated	32,446,383	32,401,168
Total unrestricted net assets	**623,501,532**	**587,677,734**

Temporarily restricted	36,086,697	25,910,003
Permanently restricted	39,509,458	39,250,956
Total net assets	**699,097,687**	**652,838,693**

<table>
<thead>
<tr>
<th>Commitments and contingencies (notes 10, 11 and 12)</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

| **Total liabilities and net assets** | **$821,725,902** | **769,989,979** |

See accompanying notes to financial statements.
<table>
<thead>
<tr>
<th>Statement of Activities</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues and support:</td>
<td></td>
</tr>
<tr>
<td>External revenue:</td>
<td>Unrestricted</td>
</tr>
<tr>
<td>Grants and contracts</td>
<td>30,441,132</td>
</tr>
<tr>
<td>Contributions and gifts (note 13)</td>
<td>1,024,221</td>
</tr>
<tr>
<td>Net losses on disposals of property</td>
<td>(15,971)</td>
</tr>
<tr>
<td>Other gains (losses)</td>
<td>830,402</td>
</tr>
<tr>
<td>Net external revenue</td>
<td>32,279,784</td>
</tr>
<tr>
<td>Investment income, net (note 3)</td>
<td>68,602,358</td>
</tr>
<tr>
<td>Other (note 9):</td>
<td></td>
</tr>
<tr>
<td>Net assets released from restrictions</td>
<td>4,310,056</td>
</tr>
<tr>
<td>Matching of endowment</td>
<td>—</td>
</tr>
<tr>
<td>Total revenues and other support</td>
<td>105,192,198</td>
</tr>
<tr>
<td>Expenses:</td>
<td></td>
</tr>
<tr>
<td>Program expenses:</td>
<td></td>
</tr>
<tr>
<td>Terrestrial Magnetism</td>
<td>10,410,336</td>
</tr>
<tr>
<td>Observatories</td>
<td>17,476,880</td>
</tr>
<tr>
<td>Geophysical Laboratory</td>
<td>12,428,988</td>
</tr>
<tr>
<td>Embryology</td>
<td>7,156,120</td>
</tr>
<tr>
<td>Plant Biology</td>
<td>10,802,853</td>
</tr>
<tr>
<td>Global Ecology</td>
<td>3,238,612</td>
</tr>
<tr>
<td>Other programs</td>
<td>826,901</td>
</tr>
<tr>
<td>Total program expenses</td>
<td>62,340,690</td>
</tr>
<tr>
<td>Administrative and general expenses</td>
<td>7,027,710</td>
</tr>
<tr>
<td>Total expenses</td>
<td>69,368,400</td>
</tr>
<tr>
<td>Change in net assets</td>
<td>35,823,798</td>
</tr>
<tr>
<td>Net assets at beginning of year</td>
<td>587,677,734</td>
</tr>
<tr>
<td>Net assets at end of year</td>
<td>$623,501,532</td>
</tr>
</tbody>
</table>

See accompanying notes to financial statements.
2004

<table>
<thead>
<tr>
<th></th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Permanently Restricted</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,458,366</td>
<td>—</td>
<td>106,696</td>
<td>—</td>
<td>22,458,366</td>
</tr>
<tr>
<td>(318,211)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>(318,211)</td>
</tr>
<tr>
<td>3,968,740</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3,968,740</td>
</tr>
<tr>
<td>27,355,377</td>
<td>5,335,795</td>
<td>106,696</td>
<td>—</td>
<td>32,797,868</td>
</tr>
<tr>
<td>80,749,277</td>
<td>6,015,449</td>
<td>—</td>
<td></td>
<td>86,764,726</td>
</tr>
<tr>
<td>9,649,191</td>
<td>(9,649,191)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(223,500)</td>
<td>—</td>
<td>223,500</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>117,530,345</td>
<td>1,702,053</td>
<td>330,196</td>
<td>—</td>
<td>119,562,594</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Permanently Restricted</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,562,368</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>9,562,368</td>
</tr>
<tr>
<td>12,807,318</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>12,807,318</td>
</tr>
<tr>
<td>11,903,842</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>11,903,842</td>
</tr>
<tr>
<td>6,347,077</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6,347,077</td>
</tr>
<tr>
<td>10,371,832</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10,371,832</td>
</tr>
<tr>
<td>2,336,303</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2,336,303</td>
</tr>
<tr>
<td>1,161,863</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,161,863</td>
</tr>
<tr>
<td>54,490,603</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>54,490,603</td>
</tr>
<tr>
<td>6,475,422</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6,475,422</td>
</tr>
<tr>
<td>60,966,025</td>
<td>1,702,053</td>
<td>330,196</td>
<td>—</td>
<td>60,966,025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Permanently Restricted</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>56,564,320</td>
<td>1,702,053</td>
<td>330,196</td>
<td>—</td>
<td>58,596,569</td>
</tr>
<tr>
<td>531,113,414</td>
<td>24,207,950</td>
<td>38,920,760</td>
<td>—</td>
<td>594,242,124</td>
</tr>
</tbody>
</table>

| **587,677,734**| **25,910,003**| **39,250,956**| **652,838,693** |

Financial Statements
STATEMENTS OF CASH FLOWS
Years ended June 30, 2005 and 2004

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash flows from operating activities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in net assets</td>
<td>$46,258,994</td>
<td>58,596,569</td>
</tr>
<tr>
<td>Adjustments to reconcile increase in net assets to net cash used in operating activities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>7,175,082</td>
<td>7,794,105</td>
</tr>
<tr>
<td>Net gains on investments</td>
<td>(68,562,395)</td>
<td>(80,363,758)</td>
</tr>
<tr>
<td>Contributions of stock</td>
<td>(1,408,922)</td>
<td>(1,261,267)</td>
</tr>
<tr>
<td>Losses on disposals of property</td>
<td>15,971</td>
<td>318,211</td>
</tr>
<tr>
<td>Amortization of bond issuance costs and discount</td>
<td>39,957</td>
<td>46,574</td>
</tr>
<tr>
<td>Contributions and investment income restricted for long-term investment</td>
<td>(3,694,970)</td>
<td>(1,708,636)</td>
</tr>
<tr>
<td>(Increase) decrease in assets:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receivables</td>
<td>(553,149)</td>
<td>(141,267)</td>
</tr>
<tr>
<td>Accrued investment income</td>
<td>(97,468)</td>
<td>(376)</td>
</tr>
<tr>
<td>Increase (decrease) in liabilities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts payable and accrued expenses</td>
<td>3,262,243</td>
<td>(967,990)</td>
</tr>
<tr>
<td>Deferred revenue</td>
<td>219,730</td>
<td>(828,847)</td>
</tr>
<tr>
<td>Accrued postretirement benefits</td>
<td>1,955,000</td>
<td>2,311,000</td>
</tr>
<tr>
<td>Net cash used in operating activities</td>
<td>(15,389,927)</td>
<td>(16,205,682)</td>
</tr>
<tr>
<td>Cash flows from investing activities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition of property and equipment</td>
<td>(5,050,401)</td>
<td>(9,333,952)</td>
</tr>
<tr>
<td>Construction of telescope, facilities, and equipment</td>
<td>(16,545,615)</td>
<td>(10,423,095)</td>
</tr>
<tr>
<td>Proceeds from sales of property and equipment</td>
<td>—</td>
<td>27,323</td>
</tr>
<tr>
<td>Investments purchased</td>
<td>(541,308,692)</td>
<td>(260,313,717)</td>
</tr>
<tr>
<td>Proceeds from investments sold or matured</td>
<td>560,978,123</td>
<td>283,192,446</td>
</tr>
<tr>
<td>Proceeds from sales of investments by bond trustee</td>
<td>13,288,949</td>
<td>11,327,438</td>
</tr>
<tr>
<td>Net cash provided by investing activities</td>
<td>11,362,364</td>
<td>14,476,443</td>
</tr>
<tr>
<td>Cash flows from financing activities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond issuance costs capitalized</td>
<td>—</td>
<td>(91,887)</td>
</tr>
<tr>
<td>Proceeds from contributions and investment income restricted for:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment in endowment</td>
<td>300,000</td>
<td>360,025</td>
</tr>
<tr>
<td>Investment in property and equipment</td>
<td>3,394,970</td>
<td>1,348,611</td>
</tr>
<tr>
<td>Net cash provided by financing activities</td>
<td>3,694,970</td>
<td>1,616,749</td>
</tr>
<tr>
<td>Net decrease in cash and cash equivalents</td>
<td>(332,593)</td>
<td>(112,490)</td>
</tr>
<tr>
<td>Cash and cash equivalents at beginning of year</td>
<td>518,726</td>
<td>631,216</td>
</tr>
<tr>
<td>Cash and cash equivalents at end of year</td>
<td>$186,133</td>
<td>518,726</td>
</tr>
</tbody>
</table>

Supplementary cash flow information:
- Cash paid for interest $2,170,122 1,917,108
- Noncash activity – contributions of stock 1,408,922 1,261,267

See accompanying notes to financial statements.
(1) Organization and Summary of Significant Accounting Policies

Organization
The Carnegie Institution of Washington (Carnegie) conducts advanced research and training in the sciences. It carries out its scientific work in six research centers located throughout the United States and at an observatory in Chile. The centers are the Departments of Embryology, Plant Biology, Terrestrial Magnetism, Global Ecology, the Geophysical Laboratory, and the Observatories. Income from investments represented approximately 67% and 73% of Carnegie’s total revenues for the years ended June 30, 2005 and 2004, respectively. Carnegie’s other sources of income are primarily gifts and federal grants and contracts.

Basis of Accounting and Presentation
The financial statements are prepared on the accrual basis of accounting. Contribution revenue is classified according to the existence or absence of donor-imposed restrictions. Satisfaction of donor-imposed restrictions are reported as releases of restrictions in the statements of activities.

Investments and Cash Equivalents
Carnegie’s debt and equity investments are reported at fair value based on quoted market prices or, with respect to alternative investments, at estimated values provided by the general partners of limited partnerships or other external investment managers. These estimated values are reviewed and evaluated by Carnegie. Due to the inherent uncertainties of these estimates, these values may differ from the values that would have been reported had a ready market for such investments existed.

All investment securities are exposed to various risks such as interest rate, market and credit risks. Due to the level of risk associated with certain investment securities, it is at least reasonably possible that changes in the values of investment securities will occur in the near term and that such changes could materially affect the amounts reported in the statements of activities. All changes in fair value are recognized in the statements of activities.

Carnegie considers all highly liquid debt instruments purchased with remaining maturities of 90 days or less to be cash equivalents. Money market and other highly liquid instruments held by investment managers are reported as investments.

Income Taxes
Carnegie has been recognized by the Internal Revenue Service as exempt from federal income tax under Section 501(c)(3) of the Internal Revenue Code (the Code) except for amounts from unrelated business income. Carnegie is also an educational institution within the meaning of Section 170(b)(1)(A)(ii) of the Code. The Internal Revenue Service has classified Carnegie as other than a private foundation, as defined in Section 509(a) of the Code.

Fair Value of Financial Instruments
Financial instruments of Carnegie include cash equivalents, receivables, investments, bond proceeds held by trustee, accounts and broker payables, and bonds payable. The fair value of investments in debt and equity securities is based on quoted market prices. The fair value of investments in limited partnerships is based on information provided by the general partners as discussed in note 1 (Investments and Cash Equivalents) above.

The fair value of the 1993 Series A bonds payable is based on quoted market prices. The fair value of the 1993 Series B and 2002 revenue bonds payable is estimated to be the carrying value, since these bonds bear adjustable market rates (see note 6).

The fair values of cash equivalents, receivables, bond proceeds held by trustee, and accounts and broker payables approximate their carrying values based on their short maturities.
Use of Estimates
The preparation of financial statements in conformity with accounting principles generally accepted in the United States of America requires management to make estimates and assumptions that affect reported amounts and disclosures in the financial statements. Actual results could differ from those estimates.

Property and Equipment
Carnegie capitalizes expenditures for land, buildings and leasehold improvements, telescopes, scientific and administrative equipment, and projects in progress. Routine replacement, maintenance, and repairs are charged to expense. Depreciation is computed on a straight-line basis, generally over the following estimated useful lives:

- **Buildings and telescopes** – 50 years
- **Leasehold improvements** – lesser of 25 years or the remaining term of the lease
- **Scientific and administrative equipment** – 2-10 years, based on scientific life of equipment

Contributions
Contributions are classified based on the existence or absence of donor-imposed restrictions. Contributions are classified in categories of net assets as follows:

- **Unrestricted** – includes all contributions received without donor-imposed restrictions on use or time.
- **Temporarily restricted** – includes contributions with donor-imposed restrictions as to purpose of gift and/or time period expended.
- **Permanently restricted** – generally includes endowment gifts in which donors stipulate that the corpus be invested in perpetuity. Only the investment income generated from endowments may be spent. Certain endowments require that a portion of the investment income be reinvested in perpetuity.

Contributions include unconditional promises to give. In instances where such promises are to be received one year or more from the date of gift, they are recorded at a discounted amount at an appropriate risk-free rate commensurate with the expected collection period. Amortization of the discount is recorded as additional contribution revenue.

Gifts of long-lived assets, such as buildings or equipment, are considered unrestricted when placed in service. Cash gifts restricted for investment in long-lived assets are released from restriction when the asset is acquired or as costs are incurred for asset construction.

Grants
Carnegie records revenues on grants from federal agencies to the extent that reimbursable expenses are incurred. Accordingly, funds received in excess of reimbursable expenses are recorded as deferred revenue, and expenses in excess of reimbursements are recorded as accounts receivable. Reimbursement of indirect costs is based upon provisional rates which are subject to subsequent audit by Carnegie’s federal cognizant agency, the National Science Foundation.

Allocation of Costs
The costs of providing programs and administration have been summarized in the statements of activities. Accordingly, certain costs have been allocated among the programs and supporting services benefited. Fundraising expenses of $615,996 and $647,977 for the years ended June 30, 2005 and 2004, respectively, have been included in administrative and general expenses in the accompanying statements of activities.

Reclassifications
Certain reclassifications have been made to the 2004 amounts to conform to the 2005 presentation.
(2) Contributions Receivable

Contributions receivable are summarized as follows at June 30, 2005:

Unconditional promises expected to be collected in:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one year</td>
<td>$3,039,013</td>
</tr>
<tr>
<td>One year to five years</td>
<td>4,960,729</td>
</tr>
<tr>
<td>Total</td>
<td>7,999,742</td>
</tr>
</tbody>
</table>

Less:

Allowance for uncollectible amounts	(6,000)
Discount to present value	(533,938)
Total	**$7,459,804**

Pledges receivable as of June 30, 2005 and 2004 were discounted at rates ranging from 2.54% to 4.13%. The allowance for uncollectible amounts and discount to present value were $8,500 and $397,322, respectively, as of June 30, 2004.

(3) Investments

Investments at fair value consisted of the following at June 30, 2005 and 2004:

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time deposits and money market funds</td>
<td>$55,825,078</td>
<td>51,168,508</td>
</tr>
<tr>
<td>Debt mutual funds</td>
<td>—</td>
<td>26,596</td>
</tr>
<tr>
<td>Debt securities</td>
<td>68,048,149</td>
<td>86,251,775</td>
</tr>
<tr>
<td>Equity securities</td>
<td>160,682,208</td>
<td>150,678,506</td>
</tr>
<tr>
<td>Limited real estate partnerships</td>
<td>35,810,745</td>
<td>39,575,148</td>
</tr>
<tr>
<td>Limited partnerships</td>
<td>320,705,415</td>
<td>263,069,177</td>
</tr>
<tr>
<td>Total</td>
<td>$641,071,595</td>
<td>590,769,709</td>
</tr>
</tbody>
</table>

Investment income, net consisted of the following for the years ended June 30, 2005 and 2004:

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest and dividends</td>
<td>$9,024,867</td>
<td>7,487,625</td>
</tr>
<tr>
<td>Net realized gains</td>
<td>48,633,590</td>
<td>41,020,315</td>
</tr>
<tr>
<td>Net unrealized gains</td>
<td>19,928,805</td>
<td>39,343,443</td>
</tr>
<tr>
<td>Less unrealized gains</td>
<td>(1,026,502)</td>
<td>(1,086,658)</td>
</tr>
<tr>
<td>Total</td>
<td>$76,560,760</td>
<td>86,764,726</td>
</tr>
</tbody>
</table>

As of June 30, 2005 and 2004, respectively, the fair value for approximately $434.3 million and $361.3 million of Carnegie’s limited real estate partnership and limited partnership investments has been estimated by the general partners in the absence of readily ascertainable values as of that date.
(4) Property and Equipment

Property and equipment placed in service consisted of the following at June 30, 2005 and 2004:

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings and improvements</td>
<td>$54,750,109</td>
<td>$53,023,675</td>
</tr>
<tr>
<td>Scientific equipment</td>
<td>30,314,342</td>
<td>37,953,848</td>
</tr>
<tr>
<td>Telescopes</td>
<td>92,277,742</td>
<td>81,634,844</td>
</tr>
<tr>
<td>Construction in progress</td>
<td>30,630,550</td>
<td>14,880,288</td>
</tr>
<tr>
<td>Administrative equipment</td>
<td>2,594,566</td>
<td>2,370,705</td>
</tr>
<tr>
<td>Land</td>
<td>817,117</td>
<td>787,896</td>
</tr>
<tr>
<td>Art</td>
<td>38,105</td>
<td>38,105</td>
</tr>
<tr>
<td>Total</td>
<td>211,422,531</td>
<td>190,689,361</td>
</tr>
<tr>
<td>Less accumulated depreciation</td>
<td>(52,204,329)</td>
<td>(45,876,121)</td>
</tr>
<tr>
<td>Net</td>
<td>159,218,202</td>
<td>144,813,240</td>
</tr>
</tbody>
</table>

Construction in progress consisted of the following at June 30, 2005 and 2004:

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings</td>
<td>$26,717,890</td>
<td>12,009,263</td>
</tr>
<tr>
<td>Scientific equipment</td>
<td>3,912,660</td>
<td>2,871,025</td>
</tr>
<tr>
<td>Total</td>
<td>30,630,550</td>
<td>14,880,288</td>
</tr>
</tbody>
</table>

At June 30, 2005 and 2004, approximately $82.8 million and $84.2 million, respectively, of construction in progress and other property, net of accumulated depreciation, was located in Las Campanas, Chile. During construction in 2005 and 2004, Carnegie capitalized interest costs of approximately $562,000 and $615,000, respectively, as construction in progress.

(5) Magellan Consortium

During the year ended June 30, 1998, Carnegie entered into an agreement (Magellan Agreement) with four universities establishing a consortium to build and operate the Magellan telescopes. The two Magellan telescopes are located on Manqui Peak, Las Campanas in Chile. The first telescope, with a cost of approximately $41.7 million, was placed in service during 2001. The other, with a cost of approximately $30.1 million, was placed in service in 2003.

The university members of the consortium, by contribution to the construction and operating costs of Magellan, acquire rights of access and oversight as described in the Magellan Agreement. Total contributions by the university members for construction are expected to cover 50% of the total expected costs. As of June 30, 2005, $36.0 million has been received. These monies are being used by Carnegie to finance part of the Magellan Telescopes’ construction costs. As of June 30, 2005 and 2004, the excess of university members’ contributions over operating costs totaled approximately $31.7 million and $32.5 million, respectively, and is included in deferred revenue in the accompanying statements of financial position. The deferred revenue is being recognized ratably as income over the remaining estimated useful lives of the telescopes.

(6) Bonds Payable

1993 California Educational Facilities Authority Revenue Bonds

On November 1, 1993, Carnegie issued $17.5 million each of Series A and Series B California Educational Facilities Authority Revenue tax-exempt bonds. Bond proceeds were used to finance the Magellan telescope project and the renovation of the facilities of the Observatories at Pasadena. The
balances outstanding at June 30, 2005 and 2004, on the Series A issue totaled $17,500,000 and $17,500,000, respectively, and on the Series B issue totaled $17,500,000 and $17,500,000, respectively. The balances outstanding are net of unamortized bond issue costs and bond discount.

Series A bonds bear interest at 5.6% payable in arrears semiannually on each April 1 and October 1 and upon maturity on October 1, 2023. Series B bonds bear interest at variable money market rates (ranging from 0.97% to 2.53% during the year, and 2.12% at June 30, 2005) in effect from time to time, up to a maximum of 12% over the applicable money market rate period of between 1 and 270 days and have a stated maturity of October 1, 2023. At the end of each money market rate period, Series B bondholders are required to offer the bonds for repurchase at the applicable money market rate. When repurchased, the Series B bonds are resold at the current applicable money market rate and for a new rate period.

Carnegie is not required to repay the Series A and B bonds until the October 1, 2023, maturity date. Sinking fund redemptions begin in 2019 in installments for both series. The fair value of Series A bonds payable at June 30, 2005 and 2004, based on quoted market prices is estimated at $20.8 million and $19.1 million respectively. The fair value of Series B bonds payable at June 30, 2005 and 2004 is estimated to approximate carrying value as the mandatory tender dates on which the bonds are repriced are generally within three months of year end.

2002 Maryland Health and Higher Education Facilities Authority Revenue Bond

On October 23, 2002, the Maryland Health and Higher Education Facilities Authority (MHHEFA) issued $30 million of its Revenue Bonds on behalf of Carnegie. Bond proceeds are being used to construct and equip a new facility for Carnegie’s Department of Embryology on the Johns Hopkins Homewood Campus in Baltimore, Maryland. Construction began in April 2003, and the facility was occupied in August 2005.

The balance outstanding at June 30, 2005 and 2004 on the Carnegie 2002 Series totaled approximately $29.7 million. The balance outstanding is net of unamortized bond issue costs. Bond proceeds held by the trustee and unexpended at June 30, 2005 and 2004 totaled approximately $4.9 million and $18.2 million, respectively.

The bonds were issued in the weekly mode and bear interest at a variable rate determined by the remarketing agent, Lehman Brothers. The rates fluctuated between .99% and 3.00% during the year ended June 30, 2005 (see note 7). The rate at June 30, 2005 was 2.40%. Rates on remar...
(7) Interest Rate Swap Agreement

Carnegie entered into a swap agreement with an effective date of October 23, 2002. This swap agreement relates to $15 million face amount of its Series 2002 Maryland Health and Higher Education Facilities Authority Revenue Bonds (see note 6). The agreement provides for Lehman Brothers Special Financing Inc. to receive 3.717% in interest on a notional amount of $15 million and to pay interest at a floating rate of 68% of the three-month LIBOR rate, reducing on the dates and in the amounts as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2033</td>
<td>$3,000,000</td>
</tr>
<tr>
<td>2034</td>
<td>3,000,000</td>
</tr>
<tr>
<td>2035</td>
<td>3,000,000</td>
</tr>
<tr>
<td>2036</td>
<td>3,000,000</td>
</tr>
</tbody>
</table>

The interest rate swap agreement was entered into by Carnegie to mitigate the risk of changes in interest rates associated with variable interest rate indebtedness. Carnegie applies the provisions of FASB Statement No. 133, *Accounting for Derivative Instruments and Hedging Activities*. This standard requires certain derivative financial instruments to be recorded at fair value. The interest rate swap agreement described above is a derivative instrument that is required to be recorded at fair value. The estimated fair value at year end was a liability of $1,456,776 in 2005 and an asset of $174,107 in 2004. These amounts are included in accounts payable and accrued expenses and accounts receivable, respectively, on the accompanying statements of financial position. The change in fair value for the years ended June 30, 2005 and 2004 was a loss of $1,630,883 and a gain of $1,420,726, respectively, and is reported as other income or loss.

(8) Employee Benefit Plans

Retirement Plan

Carnegie has a noncontributory, defined contribution, money-purchase retirement plan in which all U.S. personnel are eligible to participate. After one year of participation, an individual’s benefits are fully vested. The Plan has been funded through individually owned annuities issued by Teachers’ Insurance and Annuity Association (TIAA) and College Retirement Equities Fund (CREF). Contributions made by Carnegie totaled approximately $3.2 million and $3.0 million for the years ended June 30, 2005 and 2004, respectively.

Postretirement Benefits Plan

Carnegie provides postretirement medical benefits to all employees who retire after age 55 and have at least 10 years of service. Cash payments made by Carnegie for these benefits totaled approximately $623,000 and $532,000 for the years ended June 30, 2005 and 2004, respectively.

The expense for postretirement benefits for the years ended June 30, 2005 and 2004 consists of the following:

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service cost–benefits earned during the year</td>
<td>$1,151,000</td>
<td>1,233,000</td>
</tr>
<tr>
<td>Interest cost on projected benefit obligation</td>
<td>1,184,000</td>
<td>1,214,000</td>
</tr>
<tr>
<td>Amortization of gain</td>
<td>243,000</td>
<td>396,000</td>
</tr>
<tr>
<td>Postretirement benefit cost</td>
<td>$2,578,000</td>
<td>2,843,000</td>
</tr>
</tbody>
</table>
The 2005 postretirement benefits expense was approximately $1,955,000 more than the cash expense of $623,000, and the 2004 postretirement benefits expense was approximately $2,311,000 more than the cash expense of $532,000. The postretirement benefits expense was allocated among program and supporting services expenses in the accompanying statements of activities.

The reconciliation of the Plan’s funded status to amounts recognized in the financial statements at June 30, 2005 and 2004 follows:

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in benefit obligation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benefit obligation at beginning of year</td>
<td>$19,200,000</td>
<td>20,531,000</td>
</tr>
<tr>
<td>Service cost</td>
<td>1,151,000</td>
<td>1,233,000</td>
</tr>
<tr>
<td>Interest cost</td>
<td>1,184,000</td>
<td>1,214,000</td>
</tr>
<tr>
<td>Actuarial loss</td>
<td>(105,000)</td>
<td>(3,246,000)</td>
</tr>
<tr>
<td>Benefits paid</td>
<td>(623,000)</td>
<td>(532,000)</td>
</tr>
<tr>
<td>Benefit obligation at end of year</td>
<td>20,807,000</td>
<td>19,200,000</td>
</tr>
</tbody>
</table>

Change in plan assets:		
Fair value of plan assets at beginning of year	—	—
Actual return on plan assets	—	—
Contribution to plan	623,000	532,000
Benefits paid	(623,000)	(532,000)
Fair value of plan assets at end of year	—	—
Funded status	(20,807,000)	(19,200,000)
Unrecognized net actuarial loss	5,182,000	5,530,000
Accrued benefit cost	**($15,625,000)**	**(13,670,000)**

The present value of the benefit obligation as of June 30, 2005 was determined using an assumed discount rate of 5.25%. The present value of the benefit obligation as of June 30, 2004 was determined using an assumed discount rate of 6.25%. Carnegie’s policy is to fund postretirement benefits as claims and administrative fees are paid.

For measurement purposes, an 11% annual rate of increase in medical claims was assumed for 2005; the rate of increase was assumed to decrease over the next eight years, eventually reaching 5.5% in 2013 and remain at that level thereafter. The healthcare cost trend rate assumption has a significant effect on the amounts reported. A one-percentage point change in assumed annual healthcare cost trend rate would have the following effects:

<table>
<thead>
<tr>
<th></th>
<th>One-percentage point increase</th>
<th>One-percentage point decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect on total of service and interest cost components</td>
<td>$786,000</td>
<td>(481,000)</td>
</tr>
<tr>
<td>Effect on postretirement benefit obligation</td>
<td>3,996,000</td>
<td>(3,118,000)</td>
</tr>
</tbody>
</table>

The measurement date used to determine postretirement benefit obligations is July 1.

Carnegie expects to contribute approximately $539,000 to its postretirement benefit plan during the year ended June 30, 2005.

The following benefit payments (net of retiree contributions), which reflect expected future service, are expected to be paid in future years ending June 30:

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$539,000</td>
</tr>
<tr>
<td>2007</td>
<td>558,000</td>
</tr>
<tr>
<td>2008</td>
<td>658,000</td>
</tr>
<tr>
<td>2009</td>
<td>741,000</td>
</tr>
<tr>
<td>2010</td>
<td>798,000</td>
</tr>
<tr>
<td>2011-2014</td>
<td>5,153,000</td>
</tr>
</tbody>
</table>
On December 8, 2003, the President signed into law the Medicare Prescription Drug Improvement and Modernization Act of 2003 (the Act). Under the Medicare Prescription Drug Program, as proposed under the Act, groups who offer retiree prescription drug coverage at least actuarially equivalent to Medicare Plan D are eligible for a subsidy. In 2004, the Financial Accounting Standards Board issued SFAS No. 106-2, Accounting and Disclosure Requirements Related to the Medicare Prescription Drug, Improvement and Modernization Act of 2003, which is effective for fiscal years beginning after June 15, 2004, with early adoption encouraged.

Carnegie has adopted this standard in 2005. Based on the Carnegie Plan amendments effective July 1, 2005, the prescription drug benefits offered by Carnegie were determined to not be actuarially equivalent to Medicare Plan D, and the effects of the Act, excluding the subsidy, do not have a significant impact on the per capita claims cost.

(9) Net Assets

Temporarily Restricted Net Assets
Temporarily restricted net assets were available to support the following purposes at June 30, 2005 and 2004:

<table>
<thead>
<tr>
<th>Purpose</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific research programs</td>
<td>$13,782,554</td>
<td>21,862,442</td>
</tr>
<tr>
<td>Equipment acquisition and construction</td>
<td>20,102,408</td>
<td>1,839,320</td>
</tr>
<tr>
<td>Passage of time</td>
<td>2,201,735</td>
<td>2,208,241</td>
</tr>
<tr>
<td>Total</td>
<td>$36,086,697</td>
<td>25,910,003</td>
</tr>
</tbody>
</table>

Permanently Restricted Net Assets
Permanently restricted net assets consisted of endowed gifts, the income from which is available to support the following purposes at June 30, 2005 and 2004:

<table>
<thead>
<tr>
<th>Purpose</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific research programs</td>
<td>$14,799,327</td>
<td>14,322,737</td>
</tr>
<tr>
<td>Equipment acquisition and construction</td>
<td>2,710,131</td>
<td>2,704,719</td>
</tr>
<tr>
<td>General support (Carnegie endowment)</td>
<td>22,000,000</td>
<td>22,000,000</td>
</tr>
<tr>
<td>Total</td>
<td>$39,509,458</td>
<td>39,027,456</td>
</tr>
</tbody>
</table>

Net Assets Released from Restrictions and Clarification of Donor Intent
During 2005 and 2004, Carnegie met donor-imposed requirements on certain gifts and, therefore, released temporarily restricted net assets as follows:

<table>
<thead>
<tr>
<th>Purpose</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific research programs</td>
<td>$2,126,125</td>
<td>3,686,708</td>
</tr>
<tr>
<td>Equipment acquisition and construction</td>
<td>2,139,930</td>
<td>4,114,912</td>
</tr>
<tr>
<td>Passage of time</td>
<td>44,000</td>
<td>1,847,571</td>
</tr>
<tr>
<td>Total</td>
<td>$4,310,055</td>
<td>9,649,191</td>
</tr>
</tbody>
</table>

During 2004, Carnegie allocated $223,500 of unrestricted net assets to establish a Plant Biology endowment fund to match a donor’s contribution. This amount is included as specific research programs in permanently restricted net assets and as matching of endowment on the accompanying statements of activities.
(10) Commitments

Carnegie entered into a contract with the University of Arizona for the construction of a secondary mirror and support system for the second telescope in the Magellan project. The amount of the original contract was approximately $590,000, $448,552 of which remained outstanding at June 30, 2005.

Carnegie entered into a contract with Johns Hopkins University for the construction of the Singer Building at the Department of Embryology. As of June 30, 2005, approximately $3.5 million remained outstanding under this contract.

Carnegie entered into a contract on July 1, 2005 for the construction of a new experiment building at the Broad Branch Road facility for approximately $2.1 million.

Carnegie entered into a contract for the construction of scientific equipment for approximately $2.3 million. As of June 30, 2005, the outstanding balance was approximately $1.3 million. Carnegie has outstanding commitments to invest approximately $96.1 million in limited partnerships at June 30, 2005.

(11) Lease Arrangements

Carnegie leases a portion of the land it owns in Las Campanas, Chile, to other organizations. These organizations have built and operate telescopes on the land. Most of the lease arrangements are not specific and some are at no cost to the other organizations. The value of the no-cost leases could not be determined and is not considered significant and, accordingly, in-kind contributions have not been recorded in the financial statements. Carnegie also leases a portion of one of its laboratories to another organization for an indefinite term. Rents to be received under the agreement are approximately $680,000 annually, adjusted for CPI increases.

Carnegie leases land and buildings for various research departments. The monetary terms of the leases are considerably below fair value; however, these terms were developed considering other nonmonetary transactions between Carnegie and the lessors. The substance of the transactions indicates arms-length terms between Carnegie and the lessors.

(12) Contingencies

Costs charged to the federal government under cost-reimbursement grants and contracts are subject to government audit. Therefore, all such costs are subject to adjustment. Management believes that adjustments, if any, would not have a significant effect on the financial statements.

(13) Related Party Transactions

Carnegie recorded contributions from its trustees, officers and directors of $2,419,419 and $4,655,832, for the years ended June 30, 2005 and 2004, respectively.
Schedules of Expenses

Years ended June 30, 2005 and 2004

<table>
<thead>
<tr>
<th></th>
<th>Carnegie Funds</th>
<th>Federal and Private Grants</th>
<th>Total Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel costs:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries</td>
<td>$15,223,153</td>
<td>5,651,882</td>
<td>20,875,035</td>
</tr>
<tr>
<td>Fringe benefits and payroll taxes</td>
<td>10,449,769</td>
<td>2,590,285</td>
<td>13,040,054</td>
</tr>
<tr>
<td>Total personnel costs</td>
<td>25,672,922</td>
<td>8,242,167</td>
<td>33,915,089</td>
</tr>
<tr>
<td>Fellowship grants and awards</td>
<td>2,382,882</td>
<td>861,146</td>
<td>3,244,028</td>
</tr>
<tr>
<td>Depreciation</td>
<td>7,175,082</td>
<td>—</td>
<td>7,175,082</td>
</tr>
<tr>
<td>General expenses:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational and research supplies</td>
<td>2,360,464</td>
<td>6,644,457</td>
<td>9,004,921</td>
</tr>
<tr>
<td>Building maintenance and operation</td>
<td>3,550,364</td>
<td>3,745,749</td>
<td>7,296,113</td>
</tr>
<tr>
<td>Travel and meetings</td>
<td>1,087,849</td>
<td>910,420</td>
<td>1,998,269</td>
</tr>
<tr>
<td>Publications</td>
<td>33,481</td>
<td>50,210</td>
<td>83,691</td>
</tr>
<tr>
<td>Shop</td>
<td>117,856</td>
<td>8,743</td>
<td>126,599</td>
</tr>
<tr>
<td>Telephone</td>
<td>195,911</td>
<td>3,212</td>
<td>199,123</td>
</tr>
<tr>
<td>Books and subscriptions</td>
<td>258,211</td>
<td>—</td>
<td>258,211</td>
</tr>
<tr>
<td>Administrative and general</td>
<td>1,794,191</td>
<td>319,955</td>
<td>2,114,146</td>
</tr>
<tr>
<td>Facilities construction</td>
<td>14,211,686</td>
<td>—</td>
<td>14,211,686</td>
</tr>
<tr>
<td>Interest</td>
<td>1,859,438</td>
<td>—</td>
<td>1,859,438</td>
</tr>
<tr>
<td>Printing and copying</td>
<td>61,195</td>
<td>332</td>
<td>61,527</td>
</tr>
<tr>
<td>Shipping and postage</td>
<td>108,677</td>
<td>15,406</td>
<td>124,083</td>
</tr>
<tr>
<td>Insurance, taxes, and professional fees</td>
<td>1,937,423</td>
<td>236,356</td>
<td>2,173,779</td>
</tr>
<tr>
<td>Equipment</td>
<td>3,793,086</td>
<td>2,008,182</td>
<td>5,801,268</td>
</tr>
<tr>
<td>Fundraising expense</td>
<td>615,996</td>
<td>—</td>
<td>615,996</td>
</tr>
<tr>
<td>Total general expenses</td>
<td>31,985,828</td>
<td>13,943,022</td>
<td>45,928,850</td>
</tr>
<tr>
<td>Total direct costs</td>
<td>67,216,714</td>
<td>23,046,335</td>
<td>90,263,049</td>
</tr>
<tr>
<td>Indirect costs:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grants and contracts</td>
<td>(7,400,796)</td>
<td>7,400,796</td>
<td>—</td>
</tr>
<tr>
<td>Total costs</td>
<td>59,815,918</td>
<td>30,447,131</td>
<td>90,263,049</td>
</tr>
<tr>
<td>Capitalized scientific equipment and facilities</td>
<td>(19,061,636)</td>
<td>(1,833,013)</td>
<td>(20,894,649)</td>
</tr>
<tr>
<td>Total expenses</td>
<td>$40,754,282</td>
<td>28,614,118</td>
<td>69,368,400</td>
</tr>
</tbody>
</table>

See accompanying independent auditors’ report.
2004

<table>
<thead>
<tr>
<th>Carnegie Funds</th>
<th>Federal and Private Grants</th>
<th>Total Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,475,943</td>
<td>4,780,166</td>
<td>19,256,109</td>
</tr>
<tr>
<td>10,009,374</td>
<td>2,238,258</td>
<td>12,247,632</td>
</tr>
<tr>
<td>24,485,317</td>
<td>7,018,424</td>
<td>31,503,741</td>
</tr>
<tr>
<td>1,966,003</td>
<td>948,967</td>
<td>2,914,970</td>
</tr>
<tr>
<td>7,794,105</td>
<td>—</td>
<td>7,794,105</td>
</tr>
</tbody>
</table>

2,438,265	5,232,412	7,670,677
8,409,920	117,067	8,526,987
1,021,637	746,156	1,767,793
40,854	31,977	72,831
99,989	23,649	123,638
201,400	5,631	207,031
342,961	—	342,961
1,299,174	186,264	1,485,438
8,530,528	—	8,530,528
1,771,130	—	1,771,130
77,751	—	77,751
169,309	24,681	193,990
2,759,936	72,450	2,832,386
1,724,656	1,673,942	3,398,598
647,977	—	647,977

| 29,535,487 | 8,114,229 | 37,649,716 |
| 63,780,912 | 16,081,620 | 79,862,532 |

(6,376,746)	6,376,746	—
57,404,166	22,458,366	79,862,532
(17,424,577)	(1,471,930)	(18,896,507)

| 39,979,589 | 20,986,436 | 60,966,025 |
Personnel July 1, 2004-June 30, 2005

Carnegie Administration

Lloyd Allen, Building Maintenance Specialist
Sharon Bassin, Assistant to the President/Assistant Secretary to the Board
Andrea Bremer, Business Coordinator
Gloria Brienza, Budget and Management Analysis Manager
Don Brooks, Building Maintenance Specialist
Marjorie Burger, Financial Accountant
Cady Canapp, Human Resources and Insurance Manager
Ellen Carpenter, Public Events and Publications Coordinator
Linda Feinberg, Manager of External Affairs
Charles Fonville, Lobby Attendant
Susanne Garvey, Director of External Affairs
Claire Hardy, Database and Communications Coordinator
Charles Hargrove, Project Archivist
Darla Keefer, Administrative Secretary
Ann Keyes, Payroll Coordinator
Charles Kim, Systems Administrator
Jeffrey Lightfield, Deputy to the Financial Manager
John Lively, Director of Administration and Finance
Rhoda Mathias, Secretary to the President
Tina McDowell, Editor and Publications Officer
Richard Meserve, President
Ann Mulfort, Project Archivist
Trong Nguyen, Financial Accountant
Michael Pimenov, Endowment Manager
Arnold Pryor, Facilities Coordinator
Gotthard Sághi-Szabó, Chief Information Officer
Jennifer Snyder, Project Archivist
John Strom, Web Manager
Kris Sundback, Financial Manager
Vickie Tucker, Administrative Coordinator/Accounts Payable
Yulonda White, Human Resources and Insurance Records Coordinator
Jacqueline Williams, Assistant to Manager, Human Resources and Insurance

1To May 6, 2005 2To November 15, 2004 3To June 30, 2005 4To December 3, 2004 5To August 4, 2004 6From January 3, 2005 7From September 1, 2004

Embryology

RESEARCH STAFF MEMBERS
Alexsky Bortvin
Donald D. Brown, Director Emeritus
Chen-Ming Fan
Steven Farber
Joseph G. Gall
Marnie Halpern
Douglas E. Koshdland
Allan C. Spradling, Director
Xixian Zheng

STAFF ASSOCIATES
Terence Murphy
Alex Schreiber
Jim Wilhelm
Judy Yanowitz

POSTDOCTORAL FELLOWS AND ASSOCIATES
Michael Buszczak, NIH Grant (Spradling), ACS Fellowship
LiQuan Cai, Mathers Charitable Foundation (Brown), NIH Grant (Brown)
Rachel Cox, Howard Hughes Research Specialist
Biswa Jit Das, Mathers Charitable Foundation (Brown), NIH Grant (Brown)
Eva DeCotto, Howard Hughes Research Associate
Josh Gamse, American Cancer Society Fellow, Carnegie Fellow
Daniel Gorelick, Postdoctoral Fellow, Carnegie Fellow
Catherine Huang, Howard Hughes Research Associate, ACS Fellowship
Dongli Huang, Howard Hughes Research Associate
Toshie Kai, Japan Science and Technology Corporation–Overseas Research Fellowship, Howard Hughes Research Specialist
Yung-Shu Kuan, Carnegie Fellow
Bob Levis, Special Investigator, NIH Grant (Spradling with University of California, Berkeley, subcontract)
Hoi Yeung Li, Howard Hughes Research Associate
Ji-Long Liu, Carnegie Fellow
Ben Ohlstein, Howard Hughes Research Associate
Kiran Santhakumar, NIH Grant (Halpern)
Zi-Qing Sun, Carnegie Fellow
Tina Tootle, Howard Hughes Research Associate
Ming-Ying Tsai, Howard Hughes Research Associate
Alexei Tulin, Howard Hughes Research Associate, NIH Grant (Spradling)
Queenie Yong, Howard Hughes Research Associate
Cynthia Wagner, Special Investigator, Carnegie Fellow
Shusheng Wang, Research Associate, NIH Grant (Zheng)
Zheng-an Wu, Special Investigator, NIH Grant (Gall) and Carnegie Fellow
Cheng Xu, Carnegie Fellow
Hong-Guo Yu, Howard Hughes Research Associate
Jiao Jiao Zhang, Carnegie Fellow, NIH Fellow

PREDOCENTAL FELLOWS AND ASSOCIATES
Dean Calahan, The Johns Hopkins University
Wilbur Channels, The Johns Hopkins University
Sara Clatterbuck, The Johns Hopkins University
Robert DeRose, The Johns Hopkins University
Jovita Diaz, The Johns Hopkins University
Daniel Ducat, The Johns Hopkins University
Robyn Goodman, The Johns Hopkins University
Jill Heidinger, The Johns Hopkins University
Margaret Hoang, The Johns Hopkins University
Courtney Hoshibata, The Johns Hopkins University
Anna Krueger, The Johns Hopkins University
Christoph Lepper, The Johns Hopkins University
Daniel Lighthouse, The Johns Hopkins University
Peter Lopez, The Johns Hopkins University
David Martinelli, The Johns Hopkins University
Mark Milutinovich, The Johns Hopkins University
Tim Mulligan, The Johns Hopkins University
Lori Orosco, The Johns Hopkins University
Andrew Skora, The Johns Hopkins University
Christopher (Kai) Sung, The Johns Hopkins University
Elcin Unal, The Johns Hopkins University
Rachel Webster, The Johns Hopkins University

SUPPORTING STAFF
Christina Bonsanti, P/T Fish Feeder
Sara Scott Brett, Technician
Ellen Cammon, Laboratory Helper
Patricia Cammon, Laboratory Helper
Rong Chen, Technician
Carol Davenport, Technician
Eugenia Dikovskaia, Animal Facility Manager
Christopher Edwards, Technician
Pat Engral, Director's Administrative Assistant
Lea Fortuno, Animal Care Technician
Nicole Gabriel, Animal Care Technician
Oliver Gibbons, P/T Lab Assistant
Aja Green, Technician

Warren Hall, Animal Care Technician
Tara Hardiman, Technician
Eileen Hogan, Senior Technician
Ella Jackson, Laboratory Helper
Fred Jackson, P/T Animal Care Technician
Connie Jewell, Graphical Artist
Glennise Johnson, Laboratory Helper
Rejeanne Juste, Technician
Susan Kern, Business Manager
Andrew Kim, Technician
Anastasia Krasnoperova, Lab Assistant
Bill Kupiec, Information Systems Manager
Megan Kutzer, Technician
Melissa Lee, P/T Lab Helper
Michelle Macurak, Technician
Ona Martin, Senior Technician
Tom McDonough, Facilities Manager
Cathy Mistrot, Technician
Christine Murphy, Senior Technician
Stephanie Owen, Technician
Shelley Paterno, Technician
Allison Pinder, Research Technician III
Jamie Planck, Technician
Earl Potts, Custodian
Christine Pratt, Howard Hughes Medical Institute Research Secretary
Ronald Roane, Animal Care Technician
Michael Sepanski, Electron Microscopy Technician
Mahmud Siddiqi, Research Specialist
Loretta Steffy, Accounting Assistant
Allen Strouse, Machinist
Michele Swanson, P/T Technician
Yan Tan, Technician
Rafael Villagray, Computer Technician
John Watt, Librarian
Christopher Weier, P/T Fish Feeder
Mike Welch, Technician
Allisandra Wen, P/T Fish Feeder
Michael Willey, Animal Care Technician
Dianne Williams, Research Technician III

VISITING INVESTIGATORS AND COLLABORATORS
Kiyokazu Agata, Okayama University, Japan
Robert Baker, Department of Neuroscience, New York University
James Beck, Department of Neuroscience, New York University
Hugo Bellen, Baylor College of Medicine
Carolyn Bergstrom, Bamfield Marine Science Centre, British Columbia, Canada
Mark G. Carter, Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH
Francesc Cebria, Departament de Genetica, Universitat de Barcelona
Rosalind Coleman, Department of Nutrition, University of North Carolina
Igor Dawid, National Institutes of Health
Michael Dean, Laboratory of Genomic Diversity, NCI-Frederick, MD
Maierya Dunham, Carl Icahn Laboratory, Princeton University
David Ginty, Professor, HHMI, Department of Neuroscience, The Johns Hopkins Medical Institute
Phil Hieter, Department of Molecular Biology and Genetics, The Johns Hopkins School of Medicine
Nancy Hopkins, Department of Biology, Massachusetts Institute of Technology
Roger Hoskins, Lawrence Berkeley National Laboratory
Andrew Hoyt, Department of Biology, The Johns Hopkins University
Gary Karpen, Salk Institute for Biological Research
Minoru S. H. Ko, Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH
Chiyoko Kobayashi, Okayama University, Japan
Cecilia Moens, Fred Hutchinson Cancer Research Center
Mari Moren, National Institute of Nutrition and Seafood Research, Bergen, Norway
Karen Oogema, European Molecular Biology Laboratory, Heidelberg, Germany
Michael Pack, Department of Medicine and Cell and Developmental Biology, University of Pennsylvania School of Medicine
Yu-Lan Piao, Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH
Erez Raz, Department of Germ Cell Development, Max Planck Institute for Biophysical Chemistry, Germany
Rafael Romero, Departament de Genetica, Universitat de Barcelona
Christopher Rose, Department of Biology, James Madison University
Gerald M. Rubin, University of California, Berkeley
Alexei A. Sharov, Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH
Eric J. Smart, Department of Pediatrics and Physiology, University of Kentucky
Bernard Thisse, Institut de Genetique et de Biologie Molleculaire et Cellulaire, CNRS INSERM ULP
Christine Thisse, Institut de Genetique et de Biologie Molleculaire et Cellulaire, CNRS INSERM ULP
Milena Vuca, Department of Pathology, The Johns Hopkins University School of Medicine
Wade Watanabe, University of North Carolina at Wilmington

1From September 1, 2004
2To December 15, 2004
3From May 2, 2005
4To December 31, 2004
5To June 15, 2005
6To December 22, 2004
7From July 1, 2004
8To August 31, 2004
9From May 16, 2005
10To June 30, 2005
11From July 15, 2004
12To June 22, 2005
13To November 30, 2004
14From October 4, 2004
15From May 17, 2005
16From February 1, 2005
17From May 31, 2005
18From August 2, 2004
19To July 30, 2004
20To May 13, 2005
21From March 7, 2005
22To May 31, 2005
23From September 29, 2005
24From January 1, 2005

Geophysical Laboratory

RESEARCH STAFF MEMBERS
George D. Cody
Ronald E. Cohen
Yingwei Fei
Marilyn L. Fogel
Robert M. Hazen
Russell J. Hemley
Wesley T. Huntress, Jr., Director
T. Neil Irvine, Emeritus
Ho-kwang Mao
Björn O. Mysen
Douglas Ramble III
Andrew Steele
Viktor Struzhkin

STAFF ASSOCIATES
Przemyslaw Dera
Burkhard Milzitter
James Scott

SENIOR RESEARCH FELLOW
Dudley R. Herschbach, Cecil and Ida Green Senior Fellow

RESEARCH SCIENTISTS
Peter M. Bell, Adjunct Senior Research Scientist
Nabil Z. Boctor, NASA, NASA Astrobiology Institute
Eugene A. Gregoryanz, Carnegie, CDAC
Jung-Fu Lin, CDAC

SUMMER EDUCATION COORDINATOR
Stephen A. Gramsch, CDAC Manager

HIGH PRESSURE COLLABORATIVE ACCESS TEAM (HPCAT), ARDOINE NATIONAL LABORATORY, CHICAGO; AND BROOKHAVEN NATIONAL LABORATORY, UPTON, NY
Arun Bommannavar, Beamline Control Scientist
Paul Chow, Beamline Scientist
Yang Ding, Postdoctoral Associate
Quanzhong Guo, Beamline Scientist
Daniel Häusermann, Project Manager
Jingzhu Hu, Beamline Scientist
Michael Y. Hu, Beamline Scientist
Haozhe Liu, Postdoctoral Research Associate
Zhen-Xian Liu, Beamline Scientist
Yue Meng, Beamline Scientist
Veronica O’Connor, Office Manager
Eric Rod, Beamline Technician
Jinfu Shu, Research Technician
Maddury S. Somayazulu, Beamline Scientist
Jian Xu, Research Scientist
PREDOCTORAL FELLOWS AND PREDOCTORAL RESEARCH ASSOCIATES

Yu-Chun Chen, NSF Associate-Technician
Shih-Shian Ho, NSF Associate
Rebecca Martin, MSFC and ASTID Associate
Marcus Origlieri, Carnegie CVD Associate
Simon Nicholas Platts, Carnegie Fellow
Rachel Schelble, Carnegie Fellow
Maia Schweizer, ASTID and NASA Astrobiology Institute Associate
Verena Starke, NASA Marshall Space Flight Center Associate
Kevin Wheeler, Carnegie Fellow, NSF Associate
Li Zhang, NASA Associate

RESEARCH INTERNS

Elizabeth Allin, Catholic University of America
Lora Armstrong, University of Michigan
Edward Banigan, Georgetown University
Aditi Bhaskar, Brown University
Tanja Cuk, Stanford University
Rachel Erdil, Wellesley College
Gretchen Hartwig, University of Wisconsin
Amanda Hughes, Washington and Lee University
Katharine Johansen, Beloit College
Betsy Littlefield, Colby College
Jennifer Ortega, University of Missouri
Lisandra Rosario, Universidad Metropolitana, Puerto Rico
Linda Sauter, University of Washington, Seattle
Jennifer Smith, West Virginia University
Erica Staeling, Bucknell University
Isaac Tamblyn, Dalhousie University
Cathy Tarabrelli, West Virginia University
David Weinberger, Millersville University
Paula Zelanko, University of Maryland

HIGH SCHOOL STUDENTS
Koyal Bhattacharyya, Montgomery Blair High School
Debbie Cheng, Montgomery Blair High School
Daniel Cohen, Yeshiva of Greater Washington
Jacob Cohen, Yeshiva of Greater Washington
Minh Huynh-Le, Montgomery Blair High School

SUPPORTING STAFF
Macco T. Bacote, Building Engineer
George Bartels, Instrument Maker
Gary A. Bors, Building Engineer
Valance Brenneis, Laboratory Technician
Bobbie L. Brown, Instrument Maker
Stephen D. Coley, Sr., Instrument Maker
Roy R. Dingus, Facility Manager
Pablo D. Esparza, Maintenance Technician
Kevin Fries, Library Assistant
Allison Gale, Laboratory Technician
David J. George, Electronics Technician
Christos G. Hadidiacos, Electronics Engineer
Shau N. Hardy, Librarian
Charles Hargrove, Archivist
Garret Huntress, Systems Administrator/Systems Developer
Marjorie E. Imlay, Assistant to the Director
William E. Key, Building Engineer
Paul Meeder, Accounting Manager
Ann Mulfort, Archivist
Morgan Phillips, Administrative Assistant
Pedro J. Roa, Maintenance Technician
Susan A. Schmidt, Administrative Assistant
Jennifer Snyder, Archivist
Susan Southard, Grants Officer
John M. Straub, Business Manager
Andrew M. Ullman, Laboratory Technician
Merri Wolf, Library Technical Assistant
Paula Zelanko, Laboratory Technician

VISITING INVESTIGATORS
Gretchen K. Benedix, Smithsonian Institution
Constance M. Berika, American Association for the Advancement of Science
Kevin Burke, University of Houston
Christopher L. Cahill, George Washington University
Aaron Celestian, SUNY, Stony Brook
Jinyang Chen, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
I. Ming Chou, U.S. Geological Survey
Albert S. Colman, University of Maryland Biotechnology Institute, Baltimore
Catherine Corrigan, National Museum of Natural History, Smithsonian Institution
Pamela G. Conrad, Jet Propulsion Laboratory
William B. Daniels, University of Delaware
Valentina Degtyareva, Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka
Mikhail Eremets, Max-Planck Institut, Germany
Timothy Filley, Purdue University
Yuri Freiman, Verkin Institute of Low-Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov
Friedemann Freund, NASA Ames Research Center
Alexander Gavriluk, Institute for High Pressure Physics, Troitsk, Russia
Alexander Goncharov, Lawrence Livermore Laboratory
Harry W. Green, University of California, Riverside
Wojciech Grochala, University of Warsaw, Poland
Gudmundur H. Gudfinnsson, University of Texas at Dallas
John M. Hanchar, George Washington University
Bruce Jakosky, Laboratory for Atmospheric and Space Physics, University of Colorado
Haemyeong Jung, University of California, Riverside
Guk Lac Kim, Smithsonian Institution
Jie Li, University of Illinois, Urbana-Champaign
Tianfu Li, Chinese Academy of Geological Sciences
Amy Y. Liu, Georgetown University
Haozhe Liu, Institute of Physics, Chinese Academy of Sciences, Beijing
Jaime Marian, California Institute of Technology
Hidecki Masago, University of Tokyo
Kiyoto Matsuishi, University of Tsukuba, Japan
Timothy J. McCoy, Smithsonian Institution
Harold Morowitz, George Mason University
Satoshi Nakano, Tokyo Institute of Technology
Yoshihide Ogasawara, Waseda University, Japan
Takuo Okuchi, Nagoya University, Japan
Christian Ostertag-Henning, University of Muenster, Germany
Simon Nicholas Platts, University of California, Santa Cruz
Robert L. Post, Research Technology Associates, Washington, D.C.
Dean C. Presnall, University of Texas at Dallas
Charles T. Prewitt, Tucson, Arizona
Huw Rowlands, Blue Sky Project Solutions, United Kingdom
Mikhail Sakharov, Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka
Chrystele Sanloup, Laboratoire MAGIE, Université, France
Barbara Smallwood, University of Southern California
Gerd Steine-Neumann, Bayerisches Geoinstitut, University of Bayreuth, Germany
Mikhail Strzhemechny, Verkin Institute for Low-Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov
Dimitri A. Sverjensky, The Johns Hopkins University
Valery Tverdigher, Smithsonian Institution
Noreen C. Tuross, Harvard University
Yuchiro Ueno, Tokyo Institute of Technology
James A. Van Orman, Case Western Reserve University
Qingchen Wang, Chinese Academy of Sciences, Guangzhou
Wansheng Xiao, Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
Yukihiro Yoshimura, National Defense Academy, Japan
Hak Nan Yung, Chinese Academy of Sciences, Guangzhou
Yi-Gang Zhang, Academia Sinica, China
Zeming Zhang, Academia Sinica, China
Guangtian Zou, Center for Superhard Materials, Jilin University, Changchun, China

1To June 30, 2005
2From July 6, 2004
3To July 31, 2004
4To August 31, 2004
5To February 1, 2005
6To October 27, 2004
7From August 1, 2004
8From July 1, 2004
9To September 22, 2004
10From January 1, 2005
11From September 16, 2004
12To July 9, 2004
13To December 9, 2004
14From January 5, 2005
15To December 7, 2004
16From January 11, 2005
17To September 1, 2004, to June 30, 2005
18To November 1, 2004
19From January 13, 2005
20From August 4, 2004
21From January 19, 2005
22To February 28, 2005
23From July 6, 2004, to June 17, 2005
24Joint appointment with DTM
25To December 3, 2004
26To January 1, 2005
27To July 19, 2004
28To September 2, 2004
29From June 1, 2005

The Observatories

RESEARCH STAFF MEMBERS
Alan Dressler, Director
Wendy Freedman, Director
Luis Ho
Patrick McCarthy
Andrew McWilliam
John Mulchaey
Augustus Oemler, Jr., Director Emeritus
Eric Persson
George Preston, Director Emeritus
Michael Rauch
Allan Sandage, Staff Member Emeritus
François Schweizer
Leonard Searle, Director Emeritus
Stephen Shectman
Ian Thompson
Ray Weymann, Director Emeritus

RESEARCH ASSOCIATES
Dan Kelson, Staff Associate
Barry Madore, Senior Research Associate

TECHNICAL STAFF MEMBERS
Matt Johns, Associate Director of the Observatories
Alan Uomoto, Magellan Technical Manager

POSTDOCTORAL FELLOWS AND ASSOCIATES
Kurt Adelberger, Carnegie Fellow
Edo Berger, Carnegie-Princeton Hubble Fellow

1To October 1, 2004, to March 30, 2005
2To February 1, 2005
3From January 5, 2005
4To July 15, 2004
5To August 31, 2004
6From August 1, 2004
7To December 15, 2004
8To June 15, 2005
9To June 22, 2005
10To December 9, 2004
11From September 16, 2004
12To September 30, 2005
13From July 27, 2004
14To July 31, 2004
15To July 31, 2004
16From October 1, 2004, to March 30, 2005
17From July 1, 2004, to October 9, 2004
18To August 4, 2004
19To August 10, 2004
20To June 8, 2005
Samuel Boissier, Postdoctoral Associate
Jeffrey Crane, Postdoctoral Associate
Jeremy Darling, Carnegie Fellow
Jon Fulbright, Research Associate
Marla Geha, Hubble Fellow
Armando Gil de Paz, Research Associate
Michael Gladders, Carnegie Fellow
Tesla Jeltema, Postdoctoral Associate
Ivo Labbé, Carnegie Fellow

LAS CAMPANAS RESEARCH STAFF
Mark Phillips, Associate Director, Las Campanas Observatory
Miguel Roth, Director, Las Campanas Observatory

LAS CAMPANAS FELLOWS AND ASSOCIATES
Gaston Folatelli, Postdoctoral Fellow
Mario Hamuy, Hubble Fellow
Joanna Thomas-Opis, Magellan Research Associate

LAS CAMPANAS VISITING INVESTIGATOR
Nidia Morell, Visiting Scientist

SUPPORTING STAFF, PASADENA
Arnold Phifer, Director of External Affairs

SUPPORTING STAFF, LAS CAMPANAS
Christoph Birk, Data Acquisition Programmer
Jerson Castillo, Instrument Maker
Ken Clardy, Programmer
Judith Collison, Magellan Project Administrative Assistant/Assistant Business Manager
Paul Collison, Computer Systems Manager
Jorge Estrada, Electronics Technician
John Grula, Head Librarian, Information Services/Publications Manager
Tyson Hare, Mechanical Engineer
Earl Harris, Assistant, Buildings and Grounds
Charles Hull, Magellan Project Mechanical Engineer
Silvia Hutchinson, Assistant to the Director
Sharon Kelly, Buyer
Kathleen Kovak, Data Analyst
Vincent Kowal, Machine Shop Foreperson/Instrument Maker
Elsa Luna, Comptroller
Becky Lynn, Secretary
Greg Ortiz, Assistant, Buildings and Grounds
Doreen Otsuka-Griffith, Accounts Payable Clerk
Robert Pitts, Assistant, Buildings and Grounds
Scott Rubel, Associate Facilities Manager
Eli Slawson, GMT Assistant
Jeanette Stone, Purchasing Manager
Robert Storts, Instrument Maker
Linda Valdivinos, Accounts Payable Clerk
Gregory Walth, Data Analyst
Steven K. Wilson, Facilities Manager
Pamela Wyatt, Research Assistant

SUPPORTING STAFF, LAS CAMPANAS
Carolina Alcayaga, Purchasing Officer
Ricardo Alcayaga, Mechanic
Juan Alfaro, GMT Site Maintenance Support
Hernán Angel, Driver/Purchaser
Silvia Baeza, Magellan Programmer
Hector Balbontín, Chef
Jorge Bravo, Magellan Instrument Specialist
Patricio Carmona, Janitor
Pedro Carrizo, Plumber
Jilberto Carvajal, El Pino Guard
Jorge Castillo, Paramedic
Emilio Cerda, Magellan Electronics Engineer
Johnny Chavez, Chef/Assistant
Carlos Contreras, Science Support
Angel Cortés, Accountant
Henry Cortés, Electrician
José Cortés, Janitor
Jorge Cuadra, Mechanic Assistant
Oscar Duhalde, Magellan Small Telescope Technician
Julio Egaña, Painter
Juan Espoz, Mechanic
Javier Fuentes, GMT Site Testing Support
Jaime Gómez, Accounting Assistant
Danilo González, El Pino Guard
Luis González, Janitor
Sergio González, Science Support
Javier Gutiérrez, Mechanical Technician Assistant
Luis Gutiérrez, Mechanic
Marco Jara, Chef
Patricio Jones, Magellan Electronics Engineer
Marc Leroy, Assistant Manager
Leonel Lillo, Carpenter
Gabriel Martín, Magellan Instrument Specialist
Miguel Medina, Chef
Miguel Méndez, Magellan Welder
Víctor Meriño, Magellan Telescope Operator
Mario Mondaca, P/T El Pino Guard
César Muñoz, GMT Site Testing Support
Eric Muñoz, Accountant
Pascual Muñoz, Chef
Silvia Muñoz, Business Manager
Mauricio Navarrete, Magellan Instrument Specialist
Hernán Nuñez, Magellan Telescope Operator
Miguel Ocaranza, Administrative Assistant
Herman Olivares, Night Assistant
David Osip, Magellan Instrumentation Scientist
Jorge Para, Mountain Superintendent
Fernando Peralta, Night Assistant
Frank Perez, Magellan Project Supervisor
Patricio Pinto, Electronics Engineer
Andrés Rivera, Electronics Engineer
Hugo Rivera, Magellan Telescope Operator
Javier Rivera, Paramedic
Honorio Rojas, Water Pump Operator
Jorge Rojas, Janitor
Felipe Sanchez, Magellan Telescope Operator
Philip (Skip) Schaller, Magellan Software Engineer
Gabriel Tolmo, El Pino Guard
Héctor Torres, Magellan Janitor
Manuel Traslaviña, Heavy Equipment Operator
Geraldo Vallardes, Magellan Telescope Operator
Sergio Vera, GMT Site Testing Support
José Soto Villagran, Software Engineer
Patricia Villar, Administrative Assistant

VISITING INVESTIGATORS
Christoph Ackermann, University of Cambridge, UK
Javier Alonso, University of Michigan
Timo Anguita, Universidad Católica, Chile
Raul Angulo, Universidad Católica, Chile
Dimitri Apostol, State University of New York
José Arenas, Universidad de Concepción, Chile
Tim Axelrod, University of Arizona
Rodolfo Barba, Universidad de la Serena, Chile
Jack Barberis, Harvard University, CfA
Felipe Barrientos, Universidad Católica, Chile
Mary Barsony, University of California, San Francisco
Jill Bechtold, University of Arizona
George Becker, California Institute of Technology
Rebecca Bernstein, University of Michigan
Guillermo Blanc, Universidad de Chile
Michael Blanton, New York University
Alexander Scholz, University of Toronto
Patrick Setzer, University of Michigan
Scott Sheppard, Department of Terrestrial Magnetism
Marc Siegar, University of California, Irvine
Nick Sieger, University of Arizona
Robert Simcoe, Massachusetts Institute of Technology
Stephen Smee, The Johns Hopkins University
Larry Smith, National Aeronautics and Space Administration
Nathan Smith, University of Colorado
Verne Smith, Harvard University, CfA
Dante Steeghs, Harvard University, CfA
Christopher Stubbs, Harvard University, CfA
Dennis Sullivan, University of Victoria, Canada
Andrzej Szenczyorgi, Harvard University, CfA
Christoph Thom, Swinburne University of Technology, Australia
Cristina Thomas, Massachusetts Institute of Technology
Lucia Tian, Massachusetts Institute of Technology
Eline Tolstoy, Kapteyn Astronomical Institute, Netherlands
Manuel Torres, Harvard University, CfA
Exequiel Treister, Universidad de Chile
Miles Trevor, University of Birmingham, UK
Chad Trujillo, Department of Terrestrial Magnetism
Jon Trump, University of Arizona
Antoniou Valsamo, Harvard University, CfA
Maureen Van Den V erg, Harvard University, CfA
Mauro Vaz, Massachusetts Institute of Technology
Faith Vilas, National Aeronautics and Space Administration
Mattew Walker, University of Michigan
Zhong Wang, Harvard University, CfA
Christopher Watson, The University of Sheffield, UK
Tracy Web, University of Leiden, Netherlands
Alycia Weinberger, Department of Terrestrial Magnetism
Hsiao Wen-Chen, Massachusetts Institute of Technology
Kim Wenn, Macalster College
Marianne Westergaard, University of Arizona
Michael Westover, Harvard University, CfA
Ronald Wilhelm, Texas Tech University
John Wilson, Harvard University, CfA
Joshua Winn, Harvard University, CfA
Michael Woodroof, University of Michigan
Yujin Yang, University of Arizona
Howard Yee, University of Toronto
Erick Young, University of Arizona
Andreas Zezas, Harvard University, CfA
Ping Zhao, Harvard University, CfA
Wei Zheng, The Johns Hopkins University
Manuela Zoccalli, Universidad Católica, Chile

1From August 1, 2004
2From March 1, 2005
3From August 25, 2004
4To June 30, 2005
5From September 1, 2004
6To June 30, 2005
7From August 23, 2004
8From January 1, 2005; formerly Electronics Engineer

Plact Biology
RESEARCH STAFF MEMBERS
M. Kathryn Barton
Winslow R. Briggs, Director Emeritus
David Ehrhardt
Wolf B. Frommer
Arthur R. Grossman
Christopher R. Somerville, Director
Shauna C. Somerville
Zhi-Yong Wang

STAFF ASSOCIATE
Seung Y. Rhee, Director, TAIR

ADJUNCT STAFF
Devaki Bhaya
Matthew Evans

VISITING INVESTIGATORS
Hae-Young Cho, Ulsan University, Korea
Stephan Eberhard, Institut de Biologie Physico-Chimique, France
Alisdair Ferrie, Max-Planck-Gesellschaft, Germany
Torben Gjetting, Riso National Laboratory, Denmark
Guido Grossman, Universität Regensburg, Germany
Hong Gu, Riso National Laboratory, Denmark
Agnes Harms, University of Tübingen, Germany
Vivien La Londe, University of Tübingen, Germany
Jennifer Milne, Stanford University
Rene Wuukske, University of Potsdam, Germany
Laurent Zimmerli, University of Fribourg, Switzerland

POSTDOCTORAL FELLOWS AND ASSOCIATES
Debbie Alexander, Carnegie Fellow
Stefan Bauer, DFG Fellow
Dominique Bergmann, NIH Research Associate
Marta Berrocal-Lobo, NSF Research Associate
Ginger Brininstool, DOE Research Associate
Bhavna Chaudhri, Koerber Research Associate
Karen Deuschle, Carnegie Fellow
Stephan Eberhard, NSF Research Associate
John Emerly, NIH Research Associate
José Estevez, Carnegie Fellow
Marcus Fehr, Carnegie Fellow
Satyalinga Srinivasan Gampala, NIH Fellow
Yu Guan, NSF Research Associate
Thorsten Hamman, DFG Fellow
Mamatha Hanumappa, NIH Research Associate
Jun-Xian He, Carnegie Fellow
Matthew Humphrey, NSF Research Associate
Rachael Huntley, Carnegie Fellow
Chung-Soon Im, NSF Research Associate
Pablo Jenik, NSF Research Associate
Thiis Kaper, NIH Research Associate
Nicholas Kaplinsky, NSF Research Associate
Soo-Hwan Kim, Carnegie Fellow
Tae-Wuk Kim, DOE Research Associate
Serry Koh, NSF Research Associate
Sylvie LaLonde, NIH Research Associate
Shijun Li, NSF Research Associate
Melisa Lim, DOE Research Associate
Loren Looger, Koerber Fellow
Dominique Loque, Carnegie Fellow
Yigong Lou, NSF Research Associate
Stanley Maclean, NSF Research Associate
Jennifer Milne, DOE Research Associate
Florence Mus, DOE Research Associate
Totte Niittyla, Koerber Fellow
Sakiko Okumo, Koerber Fellow
Joergen Persson, Koerber Fellow

Carnegie Fellow

DOE Research Associate

NIH Research Associate

NSF Research Associate

Carnegie Fellow

Risø National Laboratory, Denmark
Ulsan University, Korea
University of Tübingen, Germany
Department of Terrestrial Magnetism
University of Arizona
University of Tübingen, Germany

University of Fribourg, Switzerland

University of Tübingen, Germany

Risø National Laboratory, Denmark
University of Tübingen, Germany

University of Tübingen, Germany

University of Fribourg, Switzerland

IMAGE COURTESY PAUL STERBENTZ.
<table>
<thead>
<tr>
<th>Date Range</th>
<th>Research Staff Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>From November 1, 2004, to June 30, 2005</td>
<td>L. Thomas Aldrich, Emeritus</td>
</tr>
<tr>
<td>From May 1, 2005, to June 8, 2005</td>
<td>Conel M. O'D. Alexander</td>
</tr>
<tr>
<td>From September 20, 2004, to May 5, 2005</td>
<td>Alan P. Boss</td>
</tr>
<tr>
<td>From April 25, 2005</td>
<td>R. Paul Butler</td>
</tr>
<tr>
<td>From May 1, 2004</td>
<td>Richard W. Carlson</td>
</tr>
<tr>
<td>From July 5, 2004, to December 31, 2004</td>
<td>John E. Chambers</td>
</tr>
<tr>
<td>From June 30, 2004</td>
<td>John A. Graham, Emeritus</td>
</tr>
<tr>
<td>From April 25, 2005</td>
<td>Erik H. Hauri</td>
</tr>
<tr>
<td>To February 2, 2005</td>
<td>David E. James</td>
</tr>
<tr>
<td>To December 14, 2004</td>
<td>Alan T. Linde</td>
</tr>
<tr>
<td>To December 31, 2004</td>
<td>Larry R. Nittler</td>
</tr>
<tr>
<td>To December 20, 2004</td>
<td>I. Selwyn Sacks</td>
</tr>
<tr>
<td>To January 6, 2005</td>
<td>Sara Seager</td>
</tr>
<tr>
<td>To January 2, 2005</td>
<td>Steven B. Shirey</td>
</tr>
<tr>
<td>To April 14, 2005</td>
<td>Paul G. Silver</td>
</tr>
<tr>
<td>To January 31, 2005</td>
<td>Sean C. Solomon, Director</td>
</tr>
<tr>
<td>To September 1, 2004</td>
<td>Fouad Tera, Emeritus</td>
</tr>
<tr>
<td>To November 8, 2004</td>
<td>Alycia J. Weinberger</td>
</tr>
<tr>
<td>To January 6, 2005</td>
<td>George W. Wetherill, Director Emeritus</td>
</tr>
<tr>
<td>To September 1, 2004</td>
<td>Senior Fellow</td>
</tr>
<tr>
<td>To August 15, 2005</td>
<td>Vera C. Rubin</td>
</tr>
</tbody>
</table>

RESEARCH SCIENTIST
James Y.-K. Cho

POSTDOCTORAL FELLOWS AND ASSOCIATES
Mark D. Behn, Carnegie Fellow¹
Maud Boyet, Carnegie Fellow²
Henner Busemann, NASA Associate³
Lucy M. Flesch, NSF Associate³
Catherine N. Foley, NASA Associate⁴
K. E. Saavik Ford, Carnegie Fellow and NASA Astrobiology Institute Fellow⁵

Nader Haghighipour, NASA Astrobiology Institute Fellow and NASA Associate
Saad S. B. Haq, NASA Associate⁶
Catherine A. Hier-Majumder, MESSENGER Associate⁶
Hannah Jang-Condell, Carnegie Fellow and NASA Astrobiology Institute Fellow⁶
Katherine A. Kelley, Carnegie Fellow

Mercedes López-Morales, Carnegie Fellow and NASA Astrobiology Institute Fellow⁹
Ambre Luguet, Carnegie Fellow¹⁰
Eugenio J. Rivera, Carnegie Fellow and NASA Astrobiology Institute Fellow¹¹
Aki Roberge, Carnegie Fellow and NASA Astrobiology Institute Fellow

Brian K. Savage, Harry Oscar Wood Fellow¹²
Maria Schönächler, NSF Associate
Alison M. Shaw, NSF Associate
Scott S. Sheppard, Hubble Fellow¹³
Taka’aki Taira, C. V. Starr Fellow
Margaret Turnbull, NASA Astrobiology Institute Postdoctoral Research Associate¹⁴

Kaspar von Braun, Carnegie Fellow, NASA Astrobiology Institute Fellow, and NSF and NASA Associate
Linda M. Warren, Harry Oscar Wood Fellow
Dayanthie S. Weeraratne, NSF Associate¹⁵

PREDOCTORAL FELLOWS AND ASSOCIATES
Lindsey S. Chambers, University of California, Santa Cruz
Saad S. B. Haq, State University of New York, Stony Brook
Kateryna Kolchko, University of Maryland, College Park
RESEARCH INTERNs
Alicia A. Aarnio, Smith College
Justin W. Domes, Marymount University
Abby Fraeman, Montgomery Blair High School
Kara D. Friend, West Virginia University
Kristen James, Carleton College
Timothy B. Means, University of North Carolina, Asheville
Ann Mulfort, Dominican University
Sonali P. Shukla, New York University

SUPPORTING STAFF
Michael J. Acerno, IT/IS Manager/Systems Engineer
Maceo T. Bacote, Building Engineer
Georg Bartels, Instrument Maker
Richard L. Bartholomew, Machinist, Instrument Maker
Jay E. Bartlett II, Machinist
Gary A. Bors, Building Engineer
Peter G. Burkett, Field Seismologist
Alexis Clements, Web and Publications Coordinator
Roy R. Dingus, Facility Manager
Janice Scherzerade Dunlap, Assistant to the Director
Pablo D. Esparza, Maintenance Technician
Shaun J. Hardy, Librarian
Mary F. Horan, Geochemistry Laboratory Manager
Sandra A. Keiser, Scientific Computer Programmer/Systems Manager
William E. Key, Building Engineer
Michelle Brooks Martin, Administrative Assistant
P. Nelson McWhorter, Senior Instrument Maker, Shop Manager
Timothy D. Mock, Mass Spectrometry Laboratory Manager
Ben K. Pandit, Electronics Laboratory Manager
Daniela D. Power, Geophysical Research Assistant
Pedro J. Roa, Maintenance Technician
Brian P. Schleigh, Electronic Design Engineer
Terry L. Stahl, Fiscal Officer
Jianhua Wang, Ion Microprobe Research Specialist
Tao (Kevin) Wang, Fiscal Assistant
Merri Wolf, Library Technical Assistant

VISITING INVESTIGATORS
Craig R. Bina, Northwestern University
Ingi Th. Bjarnason, University of Iceland, Reykjavik
Jay A. Brandes, University of Texas, Austin
Kevin C. Burke, University of Houston
Inés L. Cifuentes, Carnegie Institution of Washington
Roy S. Clarke, Jr., Smithsonian Institution, National Museum of Natural History
Matthew J. Fouch, Arizona State University
Jay A. Frogl, Ohio State University
Stephen S. Gao, Kansas State University, Manhattan
Harry W. Green, University of California, Riverside
William E. Holt, State University of New York, Stony Brook
Emilie E. H. Hoof Toomey, University of Oregon
Bruce M. Jakosky, University of Colorado
Tereza Cristina Junquiera-Brod, University of Brazil
Karl Kehm, Washington College
Christopher R. Kincaid, University of Rhode Island
Myung Gyoon Lee, Seoul National University
Carolina Lithgow-Bertelloni, University of Michigan
Gabriela Mallen-Orenlas, Harvard-Smithsonian Center for Astrophysics
Patrick J. McGovern, Lunar and Planetary Institute
Harold J. Morowitz, George Mason University
Elizabeth A. Myhill, Marymount University
Fenglin Niu, Rice University
Stephen H. Richardson, University of Cape Town
Stuart A. Rojstaczer, Duke University
Raymond M. Russo, Jr., University of Florida
Paul A. Rydelek, University of Memphis
Martha K. Savage, Victoria University, New Zealand

Yang Shen, University of Rhode Island
David W. Simpson, Incorporated Research Institutions for Seismology
J. Arthur Snoke, Virginia Polytechnic Institute and State University
Douglas R. Toomey, University of Oregon
Nathalie J. Valette-Silver, National Oceanographic and Atmospheric Administration
Dominique A. M. Weis, Free University of Brussels
Elisabeth Widom, Miami University, Ohio
Cecily J. Wolfe, University of Hawaii

1To August 31, 2004
2From July 1, 2004
3To January 2, 2005
4From July 7, 2004
5To April 1, 2005
6From February 15, 2005
7To April 4, 2005
8From September 1, 2004
9From July 27, 2004
10To August 4, 2004
11To August 31, 2004
12From July 1, 2004
13From September 1, 2004
14From October 15, 2004
15From December 12, 2004
16Joint appointment with Geophysical Laboratory
17To June 30, 2005
18From June 6, 2005
EMBRYOLOGY
Brown, D. D., L. Cai, B. Das, N. Marsh-Armstrong, A. M. Schreiber, and R. Juste, Thyroid hormone controls multi-
and whole embryo culture, Genesis 42, 71-76, 2005.
Chen, A. E., D. D. Ginty, and C.-M. Fan, Protein kinase A signaling via CREB controls myogenesis induced by Wnt
Decotto, E., and A. C. Spradling, The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and
signals, Dev. Cell, in press.
Wickstrom, A. P. Dicker, and U. Rodeck, Coordinate control of cell cycle regulatory genes in zebrafish develop-
Decotto, E., and A. C. Spradling, The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and
signals, Dev. Cell, in press.
Wickstrom, A. P. Dicker, and U. Rodeck, Coordinate control of cell cycle regulatory genes in zebrafish develop-
Decotto, E., and A. C. Spradling, The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and
signals, Dev. Cell, in press.

GEOPHYSICAL LABORATORY
Here updated through September 30, 2005. Reprints of the numbered publications listed below are available, except
where noted, at no charge from the Librarian, Geophysical Laboratory, 5251 Broad Branch Road, N.W.
Washington, D.C. 20005-1305, U.S.A. (e-mail: library@pldmt.gov). Please give reprint number(s) when order-
ing. The list is regularly updated on the Geophysical Laboratory Web site (http://www.gl.ciw.edu/library/).

Abbott, R. N., G. Draper, and S. Keshav, Garnet clinoxyroxene and high-pressure fractional crystalization of
magnies in an arc setting: Dominican Republic as an example, Geol. Soc. Am. Memoir, in press.

Abbott, R. N., G. Draper, and S. Keshav, UHP magma genesis, garnet peridotite and garnet clinoxyrox-
enite: an example from Dominican Republic, Int. Geol. Rev., in press.

3364 Astaghiri, A., and D. S. Sholl, DFT study of Pt adsorption on low-index SrTiO3 surfaces: SrTiO3(1 0 0), SrTiO3(1 1 1), and SrTiO3(1 1 0), Surf. Sci. 581, 132-140, 2005.

Spangler, K. M. Cole, and D. S. McKay, Comparison of antibody-antigen interactions on collagen measured by
conventional immunological techniques and atomic force microscopy, Langmuir 20, 11053-11063, 2004. (No reprints available.)

3496 barley, M. E., A. Bekker, and B. Krape, Late Archean to early Paleoproterozoic global tectonics,
environmental change, and the rise of atmospheric oxygen, Earth Planet. Sci. Lett. 238, 156-171, 2005. (No reprints available.)
3403 Cody, G. D., Geochemical connections to primitive meteorites, Elements 1, 139-143, 2005.
3416 Ding, Y., C. T. Prewitt, and D. R. Veblen, Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (CuFeS2), Am. Mineral. 90, 1265-1269, 2005. (No reprints available.)
3476 Ding, Y., D. R. Veblen, and C. T. Prewitt, High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite CuFeS2, Am. Mineral. 90, 1256-1264, 2005. (No reprints available.)
3419 Feng, Y. M., M. Somayazulu, R. Jaramillo, T. F. Rosenbaum, E. D. Isaacis, J. Hu, and H. K. Mao, Energy dispersive x-ray diffraction of charge density waves via...
with laser-heated diamond anvil cells, in Mao, and R. J. Hemley, Nuclear resonant inelastic X-ray

OBSERVATORIES

TERRESTRIAL MAGNETISM

Here updated through September 30, 2005. Reprints of the numbered publications listed below can be obtained, except where noted, at no charge from the Librarian, Department of Terrestrial Magnetism, 5241 Broad Branch Road, N.W., Washington, D.C. 20015-1305 (e-mail: library@dtm.ciw.edu). When ordering, please give reprint number(s). The list is regularly updated at the DTM Web site (http://www.dtm.ciw.edu/content/view/116/132/).

1183 Arrowsmith, S. J., M. Kendall, White, J. C. VanDecar, and D. C. Booth, Seismic imaging of a hot upwelling beneath the British Isles, Geology 33, 345-348, 2005. (No reprints available.)

1183 Behm, M. D., J. Lin, and M. T. Zuber, Evidence of hydrothermal cooling and magma injection on mid-ocean ridge temperature structure, deformation and scale, and the Protoplanetary Disk, in between the Lithosphere and Oceans, C. R. German, J. Lin, and M. L. Parson, eds., pp. 151-166, American Geophysical Union, Washington, D.C., 2004. (No reprints available.)

Malumuth, Spatially resolved spectroscopy and medium-resolution geochronology of mineralized ultramafic intrusions and associated nickel ores from the Thompson nickel belt, Manitoba, Canada, Econ. Geol. 100, 29-41, 2005. (No reprints available.)

A Gift for the Future

CARNEGIE INSTITUTION
OF WASHINGTON

One of the most effective ways of supporting the work of the Carnegie Institution of Washington is to include the institution in your estate plans. By making a bequest, you can support the institution well into the future.

A bequest is both a tangible demonstration of your dedication to the Carnegie Institution and a way to generate significant tax savings for your estate. Some bequests to Carnegie have been directed to fellowships, chairs, and departmental research projects. Some have been additions to the endowment, other bequests have been unrestricted.

The following sample language can be used in making a bequest to the Carnegie Institution:

“I give and bequeath the sum of $_________ (or % of my residuary estate) to the Carnegie Institution of Washington, 1530 P Street, N.W., Washington, DC 20005-1910.”

For additional information:

See the Carnegie web site:

Or call:
The Office of Advancement
202.387.6400

Or write:
Christine D. Smith
The Office of Advancement
Carnegie Institution of Washington
1530 P Street, N.W.
Washington, DC 20005-1910
One of the most effective ways of supporting the work of the Carnegie Institution of Washington is to include the institution in your estate plans. By making a bequest, you can support the institution well into the future.

A bequest is both a tangible demonstration of your dedication to the Carnegie Institution and a way to generate significant tax savings for your estate. Some bequests to Carnegie have been directed to fellowships, chairs, and departmental research projects. Some have been additions to the endowment, other bequests have been unrestricted.

The following sample language can be used in making a bequest to the Carnegie Institution:

“I give and bequeath the sum of $__________ (or % of my residuary estate) to the Carnegie Institution of Washington, 1530 P Street, N.W., Washington, DC 20005-1910.”

For additional information:

See the Carnegie web site: www.CarnegieInstitution.org/advancement.html

Or call: The Office of Advancement 202.387.6400

Or write: Christine D. Smith The Office of Advancement Carnegie Institution of Washington 1530 P Street, N.W. Washington, DC 20005-1910