Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from mantle–core differentiation, magma solidification and other processes. 

 Yingwei Fei examines materials at high pressure and temperature in the lab. He is interested in phase transitions—what happens when materials change from liquid to solid, or gas—what is behind elements separating and their melting relations, and chemical reactions and physical properties of these materials. His experimental research is used to interpret geochemical and geophysical observations of our planet and is applicable to geophysics, petrology, mineral physics, and planetary sciences.

Researchers in his lab use various high-pressure technique. The Piston-cylinder simulates the upper mantle, while the multi-anvil device simulate the mantle. To conduct experiments at temperatures within the deep Earth, he uses various heating techniques included laser.

 Fei received a BSc in geochemistry from Zhejiang University, China, and he obtained a Ph.D. in geochemistry from City University of New York.  He was both a pre and postdoctoral fellow at Carnegie, then a fellow at the Norton Company before becoming a staff associate at Carnegie in 1991. In 1996 he joined the senior scientific staff. For more information see here

Explore Carnegie Science

June 13, 2018

Washington, DC—New work from an international team of astronomers including Carnegie’s Jaehan Bae used archival radio telescope data to develop a new method for finding very young extrasolar planets. Their technique successfully confirmed the existence of two previously predicted Jupiter-mass planets around the star HD 163296. Their work is published by The Astrophysical Journal Letters.

Of the thousands of exoplanets discovered by astronomers, only a handful are in their formative years. Finding more baby planets will help astronomers answer the many outstanding questions about planet formation, including the process by which our own Solar System came into existence.


June 7, 2018

Washington, DC— NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record of habitability and potential life could have been preserved on the Red Planet, despite extremely harsh conditions on the surface that can easily break down organic molecules.

“The Martian surface is exposed to radiation from space and harsh chemicals that break down organic matter, so finding ancient organic molecules in the top five centimeters, from a time when Mars may have been habitable, bodes well for us to learn the story of organic molecules on Mars with future missions that will drill deeper,” said

June 6, 2018

Washington, DC—A team of scientists led by Carnegie’s Shaunna Morrison and including Bob Hazen have revealed the mineralogy of Mars at an unprecedented scale, which will help them understand the planet’s geologic history and habitability. Their findings are published in two American Mineralogist papers.

Minerals form from novel combinations of elements. These combinations can be facilitated by geological activity, including volcanoes and water-rock interactions. Understanding the mineralogy of another planet, such as Mars, allows scientists to backtrack and understand the forces that shaped their formation in that location.

An instrument on NASA’s Mars Curiosity Rover

April 23, 2018

Washington, DC—A team of researchers including Carnegie’s Bob Hazen is using network analysis techniques—made popular through social media applications—to find patterns in Earth’s natural history, as detailed in a paper published by Proceedings of the National Academy of Science. 

By using network analysis to search for communities of marine life in the fossil records of the Paleobiology Database, the team—including researchers at Harvard University and Rensselaer Polytechnic Institute—was able to quantify the ecological impacts of major events like mass extinctions. Their work may help humanity anticipate the consequences of a “sixth mass extinction,” which the rate of species

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed by four years at the University of California,


Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two years,

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines,

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be used to provide a direct

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter had been at

Guoyin Shen's research interests lie in the quest to establish and to examine models for explaining and controlling the behavior of materials under extreme conditions. His research activities include investigation of phase transformations and melting lines in molecular solids, oxides and metals; polyamorphism in liquids and amorphous materials; new states of matter and their emergent properties under extreme conditions; and the development of enabling high-pressure synchrotron techniques for advancing compression science. 

He obtained a Ph.D. in mineral physics from Uppsala University, Sweden in 1994 and a B.S. in geochemistry from Zhejiang University, China in 1982. For more

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in Canada.