Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy distribution in the early 1980s and subsequently conducted the Las Campanas Redshift Survey (LCRS) using the C100 fiber spectrograph—a device that collects light, disperses it into spectra to reveal the chemistry and other features. The LCRS was the definitive distance survey of the time and showed that the galaxy distribution becomes homogeneous at large scales compared with the strong fluctuations characteristic of the small-scale distribution.

Hydrogen and helium were produced in the Big Bang, but heavier elements came from nucleosynthesis in successive stellar generations. The oldest stars are deficient in heavy elements, what astronomers call metal-poor. In the 1980s, Shectman and George Preston conducted a survey for these objects. Using novel techniques they discovered the majority of known stars with heavy-element abundances less than about 1% of the Sun’s. Shectman has also worked on metal-poor stars in the Hamburg-ESO survey, using Magellan spectrographs to identify and study the best ones in detail.

 Shectman developed a series of photon-counting detectors for faint-object spectroscopy. They were used at Las Campanas and copied by other observatories. He also built the high-resolution echelle spectrograph and the multiobject fiber spectrograph for the 100-inch du Pont telescope. With Rebecca Bernstein, he built the high-resolution echelle spectrograph for Magellan, which has been in service for several years. He is currently working on the Magellan echellette spectrograph, a joint MIT-Carnegie project with Scott Burles (MIT) and Carnegie’s Ian Thompson, and the Magellan Planet Finder, a collaboration with Carnegie’s Paul Butler and Jeff Crane.

Shectman received his B.S. in physics from Yale Univesity and a Ph. D. in astronomy from Caltech where he was also a National Science Foundation fellow. Before joining the Carnegie staff in 1975, he was a postdoctoral fellow at the University of Michigan. For more information see http://obs.carnegiescience.edu/users/shec

Scientific Area: 

Explore Carnegie Science

Alycia Weinberger
November 22, 2021

Washington, DC—Carnegie’s Alycia Weinberger and collaborators from the University of Texas at Austin and the Korean Astronomy and Space Science Institute received last month a $1.2 million grant from the Heising-Simons Foundation to develop an instrument for the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile that will enable breakthroughs in our understanding of the planet formation process.

Called MagNIFIES, for Magellans' Near-Infrared Five-band Immersion grating Efficient Spectrograph, the completed instrument will have the largest simultaneous spectral coverage of any high-resolution spectrograph in the world. It was the brainchild of

Rendering of the Giant Magellan Telescope courtesy of the GMTO.
November 5, 2021

Washington, DC—The National Academies of Science, Engineering, and Medicine Thursday ranked the U.S. Extremely Large Telescope program as a top strategic priority, recommending federal support for the final construction stages of the Giant Magellan Telescope, which is being built at Carnegie’s Las Campanas Observatory in Chile.

The Academies’ highly anticipated report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, was the result of its survey of the astronomy and astrophysics community regarding strategic goals and initiatives for the next 10 years.  The recommendation detailed that building an extremely large telescope “is

September 1, 2021

Pasadena, CA—Astronomer Ana Bonaca, for whom the Milky Way galaxy is laboratory to explore the evolution of the universe, has joined the Carnegie Observatories as a Staff Scientist.

Bonaca arrived this month from Harvard University where she held a prestigious Institute for Theory and Computation Fellowship. Prior to that she completed her Ph.D. in astronomy from Yale University and a master’s degree in physics from the University of Zagreb.

Bonaca studies how the uneven pull of our galaxy’s gravity affects objects called globular clusters—spheres made up of a million stars bound together and orbiting a galactic core. The Milky Way is enveloped by a

June 29, 2021

Washington, DC—A team of Carnegie astronomers was awarded $1.4 million from the Heising-Simons Foundation to develop an ambitious and versatile infrared spectrograph for the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile that will enable breakthroughs in understanding cosmology, galaxy evolution, and exoplanet atmospheres.

Spearheaded by instrument lead Nicholas Konidaris and project scientists Andrew Newman and Gwen Rudie of the Carnegie Observatories, the project, called the Magellan Infrared Multiobject Spectrograph, or MIRMOS, will expand researchers’ view of the sky in the infrared wavelengths of the spectrum and significantly advance

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

Ana Bonaca is Staff Member at Carnegie Observatories. Her specialty is stellar dynamics and her research aims to uncover the structure and evolution of our galaxy, the Milky Way, especially the dark matter halo that surrounds it. In her research, she uses space- and ground-based telescopes to measure the motions of stars, and constructs numerical experiments to discover how dark matter affected them.

She arrived in September 2021 from Harvard University where she held a prestigious Institute for Theory and Computation Fellowship. 

Bonaca studies how the uneven pull of our galaxy’s gravity affects objects called globular clusters—spheres made up of a million

Peter Gao's research interests include planetary atmospheres; exoplanet characterization; planet formation and evolution; atmosphere-surface-interior interactions; astrobiology; habitability; biosignatures; numerical modeling.

His arrival in September 2021 continued Carnegie's longstanding tradition excellence in exoplanet discovery and research, which is crucial as the field prepares for an onslaught of new data about exoplanetary atmospheres when the next generation of telescopes come online.

Gao has been a part of several exploratory teams that investigated sulfuric acid clouds on Venus, methane on Mars, and the atmospheric hazes of Pluto. He also

Anne Pommier's research is dedicated to understanding how terrestrial planets work, especially the role of silicate and metallic melts in planetary interiors, from the scale of volcanic magma reservoirs to core-scale and planetary-scale processes.

She joined Carnegie in July 2021 from U.C. San Diego’s Scripps Institution of Oceanography, where she investigated the evolution and structure of planetary interiors, including our own Earth and its Moon, as well as Mars, Mercury, and the moon Ganymede.

Pommier’s experimental petrology and mineral physics work are an excellent addition to Carnegie’s longstanding leadership in lab-based mimicry of the

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation