Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy distribution in the early 1980s and subsequently conducted the Las Campanas Redshift Survey (LCRS) using the C100 fiber spectrograph—a device that collects light, disperses it into spectra to reveal the chemistry and other features. The LCRS was the definitive distance survey of the time and showed that the galaxy distribution becomes homogeneous at large scales compared with the strong fluctuations characteristic of the small-scale distribution.

Hydrogen and helium were produced in the Big Bang, but heavier elements came from nucleosynthesis in successive stellar generations. The oldest stars are deficient in heavy elements, what astronomers call metal-poor. In the 1980s, Shectman and George Preston conducted a survey for these objects. Using novel techniques they discovered the majority of known stars with heavy-element abundances less than about 1% of the Sun’s. Shectman has also worked on metal-poor stars in the Hamburg-ESO survey, using Magellan spectrographs to identify and study the best ones in detail.

 Shectman developed a series of photon-counting detectors for faint-object spectroscopy. They were used at Las Campanas and copied by other observatories. He also built the high-resolution echelle spectrograph and the multiobject fiber spectrograph for the 100-inch du Pont telescope. With Rebecca Bernstein, he built the high-resolution echelle spectrograph for Magellan, which has been in service for several years. He is currently working on the Magellan echellette spectrograph, a joint MIT-Carnegie project with Scott Burles (MIT) and Carnegie’s Ian Thompson, and the Magellan Planet Finder, a collaboration with Carnegie’s Paul Butler and Jeff Crane.

Shectman received his B.S. in physics from Yale Univesity and a Ph. D. in astronomy from Caltech where he was also a National Science Foundation fellow. Before joining the Carnegie staff in 1975, he was a postdoctoral fellow at the University of Michigan. For more information see http://obs.carnegiescience.edu/users/shec

Scientific Area: 

Explore Carnegie Science

May 13, 2022

Pasadena, CA— A team of astronomers led by University of Michigan’s Ian Roederer and including Carnegie’s Erika Holmbeck have identified the widest range of elements yet observed in a star beyond our own Sun. Their findings are published in The Astrophysical Journal Supplement Series.

The researchers identified 65 elements in the star, which is called HD 222925. Of these, 42 are from the bottom of the periodic table. Their identification will help astronomers understand one of the main methods by which the universe’s heavy elements were created—rapid neutron capture process.

"To the best of my knowledge, that's a record for any object

Alan Boss
January 14, 2022

Washington, DC— Carnegie’s Alan Boss was named one of 23 new Fellows of the American Astronomical Society. The honorees were chosen for their “extraordinary achievement and service” to the field.

Boss, whose contributions to the fields of astronomy and astrophysics are numerous, was specifically recognized for “innovative theoretical investigations of the formation of stars and exoplanets” as well as “tireless leadership within the exoplanet exploration community in ensuring that NASA executes a credible and successful exoplanet program.”

The AAS fellowship program began in 2020 and its members include professional astronomers

Mars mosaic courtesy of NASA.
January 13, 2022

Washington, DC—Organic molecules found in a meteorite that hurtled to Earth from Mars were synthesized during interactions between water and rocks that occurred on the Red Planet about 4 billion years ago, according to new analysis led by Carnegie’s Andrew Steele and published by Science.  

The meteorite, called Allan Hills (ALH) 84001, was discovered in the Antarctic in 1984 and is considered one of the oldest known projectiles to reach Earth from Mars.  

“Analyzing the origin of the meteorite’s minerals can serve as a window to reveal both the geochemical processes occurring early in Earth’s history and Mars’ potential for

The twin FPS units. Credit: The SDSS collaboration.
January 11, 2022

Pasadena, CA—After 21 years of observers loading heavy aluminum plates night after night, the Sloan Digital Sky Survey (SDSS) is now seeing the cosmos through robotic eyes. Following more than five years of design, development, and construction, survey members worked over the final months of 2021 to install the new robotic Focal Plane System (FPS) on the Sloan Foundation 2.5m Telescope at Apache Point Observatory (APO).

“We are thrilled to have reached this technological milestone despite being in the midst of a global pandemic and are excited to witness how this shift will enhance the work of the project,” said Juna Kollmeier. She is the Founding Director of

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

Ana Bonaca is Staff Member at Carnegie Observatories. Her specialty is stellar dynamics and her research aims to uncover the structure and evolution of our galaxy, the Milky Way, especially the dark matter halo that surrounds it. In her research, she uses space- and ground-based telescopes to measure the motions of stars, and constructs numerical experiments to discover how dark matter affected them.

She arrived in September 2021 from Harvard University where she held a prestigious Institute for Theory and Computation Fellowship. 

Bonaca studies how the uneven pull of our galaxy’s gravity affects objects called globular clusters—spheres made up of a million

Peter Gao's research interests include planetary atmospheres; exoplanet characterization; planet formation and evolution; atmosphere-surface-interior interactions; astrobiology; habitability; biosignatures; numerical modeling.

His arrival in September 2021 continued Carnegie's longstanding tradition excellence in exoplanet discovery and research, which is crucial as the field prepares for an onslaught of new data about exoplanetary atmospheres when the next generation of telescopes come online.

Gao has been a part of several exploratory teams that investigated sulfuric acid clouds on Venus, methane on Mars, and the atmospheric hazes of Pluto. He also

Anne Pommier's research is dedicated to understanding how terrestrial planets work, especially the role of silicate and metallic melts in planetary interiors, from the scale of volcanic magma reservoirs to core-scale and planetary-scale processes.

She joined Carnegie in July 2021 from U.C. San Diego’s Scripps Institution of Oceanography, where she investigated the evolution and structure of planetary interiors, including our own Earth and its Moon, as well as Mars, Mercury, and the moon Ganymede.

Pommier’s experimental petrology and mineral physics work are an excellent addition to Carnegie’s longstanding leadership in lab-based mimicry of the

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation