Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy distribution in the early 1980s and subsequently conducted the Las Campanas Redshift Survey (LCRS) using the C100 fiber spectrograph—a device that collects light, disperses it into spectra to reveal the chemistry and other features. The LCRS was the definitive distance survey of the time and showed that the galaxy distribution becomes homogeneous at large scales compared with the strong fluctuations characteristic of the small-scale distribution.

Hydrogen and helium were produced in the Big Bang, but heavier elements came from nucleosynthesis in successive stellar generations. The oldest stars are deficient in heavy elements, what astronomers call metal-poor. In the 1980s, Shectman and George Preston conducted a survey for these objects. Using novel techniques they discovered the majority of known stars with heavy-element abundances less than about 1% of the Sun’s. Shectman has also worked on metal-poor stars in the Hamburg-ESO survey, using Magellan spectrographs to identify and study the best ones in detail.

 Shectman developed a series of photon-counting detectors for faint-object spectroscopy. They were used at Las Campanas and copied by other observatories. He also built the high-resolution echelle spectrograph and the multiobject fiber spectrograph for the 100-inch du Pont telescope. With Rebecca Bernstein, he built the high-resolution echelle spectrograph for Magellan, which has been in service for several years. He is currently working on the Magellan echellette spectrograph, a joint MIT-Carnegie project with Scott Burles (MIT) and Carnegie’s Ian Thompson, and the Magellan Planet Finder, a collaboration with Carnegie’s Paul Butler and Jeff Crane.

Shectman received his B.S. in physics from Yale Univesity and a Ph. D. in astronomy from Caltech where he was also a National Science Foundation fellow. Before joining the Carnegie staff in 1975, he was a postdoctoral fellow at the University of Michigan. For more information see http://obs.carnegiescience.edu/users/shec

Scientific Area: 

Explore Carnegie Science

November 16, 2016

Pasadena, CA – The Giant Magellan Telescope Organization (GMTO) today announced the appointment of Walter E. Massey, PhD, and Taft Armandroff, PhD, to the positions of Board Chair and Vice Chair, respectively. Continuing their involvement in new leadership capacities, Massey and Armandroff will guide the GMTO Board, overseeing the construction of the 24.5-meter Giant Magellan Telescope (GMT) in the Chilean Andes and working to complete the partnership of universities, research institutions and private donors who will contribute to the construction and operation of the GMT.

Poised to be the first of a new generation of extremely large telescopes, the GMT will be the largest optical

October 3, 2016

Pasadena, CA— A star known by the unassuming name of KIC 8462852 in the constellation Cygnus has been raising eyebrows both in and outside of the scientific community for the past year. In 2015 a team of astronomers announced that the star underwent a series of very brief, non-periodic dimming events while it was being monitored by NASA’s Kepler space telescope, and no one could quite figure out what caused them. A new study from Carnegie’s Josh Simon and Caltech’s Ben Montet has deepened the mystery.  

Simon and Montet’s findings caused a stir in August, when they were posted on a preprint server while their paper was being reviewed. Now their work is now accepted for publication

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, M. Kornmesser
September 12, 2016

Pasadena, CA— Quasars are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They shine so brightly that they are often referred to as beacons and are among the most-distant objects in the universe that we can currently study. New work from a team led by Carnegie’s Eduardo Bañados has discovered 63 new quasars from when the universe was only a billion years old. (It’s about 14 billion years old today.)

This is the largest sample of such distant quasars presented in a single scientific article, almost doubling the number of ancient quasars previously known. The findings will be published by The Astrophysical Journal Supplement Series.

September 7, 2016

Washington, DC— Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe. While many dwarf galaxies surround our own Milky Way, there seem to be far too few of them compared with standard cosmological models, which raises a lot of questions about the nature of dark matter and its role in galaxy formation.

New theoretical modeling work from Andrew Wetzel, who holds a joint fellowship between Carnegie and Caltech, offers the most-accurate predictions to date about the dwarf galaxies in the Milky Way’s neighborhood. Wetzel achieved this by running the highest-resolution and most-detailed

No content in this section.

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have improved the

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Gwen Rudie studies the chemical and physical properties of very distant, so-called  high-redshift galaxies and their surrounding circumgalactic medium. She is primarily an observational astronomer working on the analysis and interpretation of high-resolution spectroscopy of high-redshift Quasi Stellar Objects and low to medium-resolution near-infrared and optical spectroscopy of high-redshift galaxies. She is interested in understanding the intergalactic medium as a tool for understanding galaxy evolution and the physical properties of very distant galaxies such as the composition of stars and their star formation rates

Rudie received her AB from Dartmouth College and her Ph D