Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

 As principal investigator of the Deep Carbon Observatory, Hazen oversees the primary mission of work to promote the transformational understanding of the chemical and biological roles of carbon in Earth's interior—a program in part supported by the Sloan Foundation.

Astrobiology is the search for the origin, distribution, and future of life in the universe. Hazen and the Carnegie team have explored the hypothesis that hydrothermal systems on planets and moons might have contributed to the formation of organic molecules, and thus the origin of life, and they have looked at the cosmochemistry of carbon, the essential element of life.

In work on mineral-molecule interactions, it turns out that the origin of life’s biochemicals have “handedness,” like left and right handiness in people. Hazen and team believe that these so-called chiral mineral surfaces may have played a significant role in the selection and concentration of molecules necessary for life.

Although minerals are necessary for essential tasks, science has assumed that the mineral species found on Earth today are much the same as they were during Earth’s first 550 million years—the Hadean Eon—when life emerged. Hazen found this not to be true. He compiled a list of every plausible mineral species on the Hadean Earth and concludes that no more than 420 different minerals—about 8 percent of the nearly 5,000 species found on Earth today—would have been present at or near Earth’s surface.

 Field observations of microbes recovered from deep drill cores, deep mines, and the ocean floor, coupled with laboratory investigations, reveal that microbial life can exist at conditions of extreme temperatures (to above 110ºC) and pressures (to > 10,000 atmospheres) previous thought impossible. Hazen is interested in research on microbes at such extreme conditions. He also explores the factors that promote the emergence of complex evolving systems.

Hazen received both has B.S. and  S.M in Earth science from MIT and his Ph. D. from Harvard University ,where he was also a research assistant and teaching fellow. He joined the scientific staff at Carnegie in 1978. For more see http://hazen.gl.ciw.edu/

Scientific Area: 

Explore Carnegie Science

January 13, 2017

Even though carbon is one of the most-abundant elements on Earth, it is actually very difficult to determine how much of it exists below the surface in Earth’s interior. Analysis by Carnegie’s Marion Le Voyer and Erik Hauri of crystals containing completely enclosed mantle magma with its original carbon content preserved has doubled the world’s known finds of mantle carbon. The findings are published in Nature Communications.

Overall, there is a lot about carbon chemistry that takes place below Earth’s crust that scientists still don’t understand. In particular, the amount of carbon in the Earth’s mantle has been the subject of hot debate for decades. This topic is of interest

GIA, Gemological Institute of America, Carnegie Science, Carnegie Institution, Carnegie Institution for Science
December 15, 2016

Washington, DC—New research from a team including Carnegie’s Steven Shirey, Emma Bullock, and Jianhua Wang explains how the world’s biggest and most-valuable diamonds formed—from metallic liquid deep inside Earth’s mantle. The findings are published in Science.

The research team, led by Evan Smith of the Gemological Institute of America, studied large gem diamonds like the world-famous Cullinan or Lesotho Promise by examining their so-called “offcuts,” which are the pieces left over after the gem’s facets are cut for maximum sparkle. They determined that these diamonds sometimes have tiny metallic grains trapped inside them that are made up of a mixture of metallic iron and nickel

October 21, 2016

Washington, DC—A group of citizen scientists and professional astronomers, including Carnegie’s Jonathan Gagné, joined forces to discover an unusual hunting ground for exoplanets. They found a star surrounded by the oldest known circumstellar disk—a primordial ring of gas and dust that orbits around a young star and from which planets can form as the material collides and aggregates.

Led by Steven Silverberg of University of Oklahoma, the team described a newly identified red dwarf star with a warm circumstellar disk, of the kind associated with young planetary systems.  Circumstellar disks around red dwarfs like this one are rare to begin with, but this star, called AWI0005x3s,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Robin Dienel
September 26, 2016

Washington, DC— When a star is young, it is often still surrounded by a primordial rotating disk of gas and dust from which planets can form. Astronomers like to find such disks because they might be able to catch the star partway through the planet-formation process, but it’s highly unusual to find such disks around brown dwarfs or stars with very low masses. New work from a team led by Anne Boucher of Université de Montréal, and including Carnegie’s Jonathan Gagné and Jacqueline Faherty, has discovered four new low-mass objects surrounded by disks. The results will be published by The Astrophysical Journal.

Three of the four objects discovered by these researchers are quite

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed by four years at the University of California,

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines,

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines, forging a

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Gwen Rudie studies the chemical and physical properties of very distant, so-called  high-redshift galaxies and their surrounding circumgalactic medium. She is primarily an observational astronomer working on the analysis and interpretation of high-resolution spectroscopy of high-redshift Quasi Stellar Objects and low to medium-resolution near-infrared and optical spectroscopy of high-redshift galaxies. She is interested in understanding the intergalactic medium as a tool for understanding galaxy evolution and the physical properties of very distant galaxies such as the composition of stars and their star formation rates

Rudie received her AB from Dartmouth College and her Ph D