Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to produce cells called spores. Each spore divides forming a single set of chromosomes (haploid) --the gametophyte--which produces the sperm and egg cells.

Evans studies how the haploid genome is required for normal egg and sperm function. In flowering plants, the female gametophyte, called the embryo sac, consists of four cell types: the egg cell, the central cell, and two types of supporting cells. Two sperm cells from the male gametophyte—the pollen—fertilize the egg and central cells to produce the embryo and endosperm, respectively. The embryo and endosperm together make up the seed. The embryo develops into the new plant and the endosperm contains the nutritive material used by the embryo and seedling; it comprises the bulk of the grain weight in cereals such as wheat, rice, and maize.

Proper seed development depends on genes from the embryo and endosperm and from genes from the maternal embryo sac and sporophyte. Using maize, Evans is developing tools for identifying genes that are required for normal embryo sac development and function. He is also investigation the factors that prevent maize and it’s wild cousin teosinte from cross pollinating, and he is identifying  genes important for gametophyte function. For more see  https://dpb.carnegiescience.edu/labs/evans-lab

Scientific Area: 

Explore Carnegie Science

Moises Exposito-Alonso
July 14, 2020

Palo Alto, CA— Carnegie evolutionary geneticist Moises Exposito-Alonso was awarded a Max Planck Society’s Otto Hahn Medal for early career excellence. The prize is endowed with 7,500 euros.

Since 1978, the society has recognized outstanding scientific achievements among its recent Ph.D. recipients with the goal of motivating particularly talented individuals to pursue academic research careers. The 2020 award was given to six scientists in the biological and medical fields; 10 in human sciences; and 10 in the chemistry, physics, and technology sector. The recipients are nominated by the directors of the Max Planck Institutes at which they conducted their doctoral

Greenhouse in Germany where Exposito-Alonso did research.
April 10, 2020

Palo Alto, CA— Carnegie’s Moises Exposito-Alonso was selected for the Heidelberg Academy of Science’s Karl Freudenberg Prize in recognition of outstanding early career achievements in the natural sciences. The prize comes with a personal 10,000 Euro award.

Representing the German state of Baden-Württemberg, the academy honors several professors under the age of 40 with endowed prizes each year, including six in 2020. All of the recipients will give public presentations of their work, with dates to be announced. An evolutionary geneticist, Exposito-Alonso received his doctorate in 2018 from the Max Planck Institute for Developmental Biology in Tübigen.

Moises Exposito-Alonso
March 18, 2020

Washington, DC— Carnegie evolutionary geneticist Moises Exposito-Alonso was named a member of the 2020 class of Forbes’ 30 Under 30 Europe list in science and healthcare. 

He was recognized for his lab’s pioneering use of genomic techniques to understand how plant species will evolve and keep pace with a changing climate. 

Out of the thousands of nominees, the 30 finalists in each of the 10 categories comprise “the world’s most impactful community of young entrepreneurs and game-changers,” said the publication in announcing his selection.  

“Growing up in southern Spain, I saw how Mediterranean

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments.