Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new techniques to analyze different variants of the same atom—isotopes—in small samples. In related studies, he uses space-based X-ray and gamma-ray instrumentation to determine the composition of planetary surfaces. He was part of the 2000-2001 scientific team to hunt for meteorites in Antarctica.

Nittler is especially interested in presolar grains contained in meteorites and in what they can tell us about our cosmic origins. He develops and uses advanced microanalytical techniques to locate and analyze these tiny particles. The Solar System formed about 4.5 billion years ago from a cloud of gas and dust. Most of the original dust grains were vaporized during Solar System formation, but in the 1980s, researchers discovered that a fraction of these particles survived, trapped in meteorites. Presolar grains are about one thousandth of a millimeter in diameter. They predate other solid material in the Solar System and are believed to have formed in winds and explosions of ancient dying stars. The unusual abundance ratios of different isotopes in presolar grains compared with other Solar System products are their defining feature. They give researchers information about a number of processes, including how elements are synthesized inside stars, how the Milky Way galaxy evolves, and what the first Solar System materials were.

As Deputy Principal Investigator on NASA’s MESSENGER mission to Mercury, Nittler is playing a leading role in determining the chemical composition of the Solar System’s innermost planet. MESSENGER, led by former Terrestrial Magnetism director Sean Solomon, has been returning a wealth of scientific data since entering obit around Mercury in March 2011. By analyzing x-ray and gamma-ray signals emitted by rocks at the planet’s surface, Nittler and colleagues have determined that Mercury is surprisingly rich in magnesium, sulfur and sodium and low in iron. By comparing elemental maps to other data sets, Nittler is unraveling clues to the origin and geological history of Mercury, an end-member of planetary formation in our solar system.

 Nittler recently worked on NASA’s Near Earth Asteroid Rendezvous (NEAR) mission to advance our understanding of the relationship of asteroids to meteorites. Although it is known from both calculations and observations that most meteorites originated from asteroids, it has been difficult to link specific asteroid classes to specific meteorite classes.

  Nittler, with collaborators, reduced and interpreted data from NEAR to determine the elemental composition of the asteroid's surface. The data clearly showed that Eros is primitive; it has not differentiated into a core, mantle, and crust. Except for the ratio of sulfur to silicon, the elemental ratios agree with those measured in ordinary chondrites—the most common type of meteorite—indicating a possible relationship. The sulfur/silicon ratio, however, is much lower than in chondrites, a fact that most likely reflects some sort of “space-weathering” processes causing sulfur to volatilize and escape.

 Nittler received his B.A. in physics from Cornell University and his Ph. D. in physics from Washington University. Before coming to Carnegie as a staff researcher in 2001, he was a postdoc at Carnegie, and a researcher at NASA’s Goddard Space Flight Center. He has also consulted with Lawrence Livermore National Laboratory for numerous years. For more information see http://www.dtm.ciw.edu/people/larry-r-nittler

Scientific Area: 

Explore Carnegie Science

Vera Rubin at Lowell Observatory, courtesy of Carnegie Institution for Science.
July 23, 2021

A Statement From Carnegie President Eric Isaacs:

As we commemorate the extraordinary life of Vera Rubin—who forever altered how we understand the universe—on what would have been her 93rd birthday, I keep coming back to a legendary moment in her transformative career and what it can teach us about our present moment.

When she joined Carnegie, she had to battle for access to the 200-inch telescope at Palomar Observatory. She was told “your time on the observatory is limited, because we don’t have a women’s bathroom.”

So, as the story has been told, as I’ve heard it, she solved the problem pretty simply by cutting out a little

The scope of Earth and Planets Laboratory science courtesy of Katherine Cain.
July 7, 2021

Carnegie’s Earth and Planets Laboratory welcomes two new staff scientists whose expertise spans from terrestrial planet interiors to the atmospheres of distant worlds.

Anne Pommier arrived this month from U.C. San Diego’s Scripps Institution of Oceanography, where she investigated the evolution and structure of planetary interiors, including our own Earth and its Moon, as well as Mars, Mercury, and the moon Ganymede. Peter Gao will join in September from U.C. Santa Cruz, where he studies the chemistry occurring in the atmospheres of Venus, Mars, Pluto, Saturn’s moon Titan, as well as exoplanets.

Pommier’s experimental petrology and mineral

June 29, 2021

Washington, DC—Carnegie’s Anat Shahar is the lead investigator on an interdisciplinary, multi-institution research team that this spring was awarded nearly $1.5 million from the Alfred P. Sloan Foundation to understand the chemical makeup of our galaxy’s most common planets with a goal of developing a framework for detecting chemical signatures of life on distant worlds.  

Since the first planet orbiting a Sun-like star beyond our Solar System was discovered in the mid-1990s, astronomers have revealed that the Milky Way is teeming with planets. To search for evidence of life on these thousands of other worlds, researchers are on the hunt for chemical markers

Carnegie mineralogist Robert Hazen
May 28, 2021

Washington, DC—Carnegie Mineralogist Robert Hazen—who advanced the concept that Earth’s geology was shaped by the rise and sustenance of life—will be honored with the 2022 International Mineralogical Association’s Medal for Excellence. The prize recognizes “outstanding scientific publication in the field of mineralogical sciences.”

The medal was created to honor a lifetime of achievement in and outstanding contributions to the fields of mineralogy, geochemistry, petrology, crystallography, and applied mineralogy.  Hazen will be its 11th recipient.

A Staff Scientist at Carnegie’s Earth and Planets Laboratory, Hazen

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation

Phillip Cleves’ Ph.D. research was on determining the genetic changes that drive morphological evolution. He used the emerging model organism, the stickleback fish, to map genetic changes that control skeletal evolution. Using new genetic mapping and reverse genetic tools developed during his Ph.D., Cleves identified regulatory changes in a protein called bone morphogenetic protein 6 that were responsible for an evolved increase in tooth number in stickleback. This work illustrated how molecular changes can generate morphological novelty in vertebrates.

Cleves returned to his passion for coral research in his postdoctoral work in John Pringles’ lab at Stanford

Brittany Belin joined the Department of Embryology staff in August 2020. Her Ph.D. research involved developing new tools for in vivo imaging of actin in cell nuclei. Actin is a major structural element in eukaryotic cells—cells with a nucleus and organelles —forming contractile polymers that drive muscle contraction, the migration of immune cells to  infection sites, and the movement of signals from one part of a cell to another. Using the tools developed in her Ph.D., Belin discovered a new role for actin in aiding the repair of DNA breaks in human cells caused by carcinogens, UV light, and other mutagens.

Belin changed course for her postdoctoral work, in

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future