With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar processes could be at work in the newly discovered planetary systems, which could then help predict smaller, extrasolar bodies that might harbor life.

It is generally believed that the Earth and other terrestrial planets formed by the accretion of many rocky planetesimals. Water and other life-giving materials are thought to have originally accreted in planetesimals located beyond 1 astronomical unit (AU) from the Sun in the early solar nebula (1 AU = distance from the Earth to the Sun). These small bodies were subsequently driven toward the inner solar system by the gravitational perturbations from Jupiter and Saturn. Chambers’s models consider both observed and hypothetical planetary systems. He and colleagues recently calculated that the evolution of the terrestrial planets and the asteroid belt was heavily dependent on the orbital characteristics of the giant planets. He further demonstrated that the amount of volatiles present was affected by the timing of giant-planet formation.

Based on evidence of the rate of impact cratering on the Moon, Chambers recently proposed a bold hypothesis about our early Solar System: five planets instead of four originally accreted inside the asteroid belt. He believes that the missing fifth planet was in an unstable orbit between Mars and the asteroid belt and was ejected by 600 million years of gravitational perturbations induced by the other planets. He proposes that the missing planet’s exodus disrupted asteroid fields, creating an increase in lunar impacts.

Chambers received his B.A. in physics from Oxford University and his Ph. D. in astronomy from Manchester University.

Explore Carnegie Science

May 28, 2018


Washington, DC—Un grupo de astrónomos del Observatorio Las Campanas, de Carnegie, incluyendo a Mark Phillips y Guillermo Blanc, junto a Miguel Roth de la Organización Telescopio Magallanes Gigante, abogaron en contra de la contaminación lumínica en una reunión que se realizó la semana pasada y que contó con la presencia de diversas autoridades chilenas.

Combatir la contaminación lumínica no se trata de no iluminar, sino de iluminar bien, explicó Blanc. Él fue el encargado de presentar los efectos que produce la luz de las ciudades, carreteras e instalaciones mineras, en las cercanías de algunos de los mayores observatorios astronómicos instalados en el país.

Una de

May 25, 2018

Washington, DC—A group of astronomers from Carnegie’s Las Campanas Observatory including Mark Phillips and Guillermo Blanc, along with Miguel Roth from the Giant Magellan Telescope Organization, presented the case against light pollution to Chilean authorities earlier this month.

Combating light pollution is not about demanding complete darkness, it is about illuminating human spaces well, Blanc explained. He reported on the effects of light from cities, highways, and mines near the nation’s biggest astronomical observatories.

Of particular concern for the researchers and technical staff at Las Campanas and nearby La Silla is the Algarrobo highway. Blanc suggested downward-

Kit Whitten in the plate analysis room. Photo by Cynthia Hunt
May 3, 2018

Cataloging Reflections by Kit Whitten, Carnegie Observatories Library Intern

It is commonly believed that when looking for valuable treasure, the best place to look is the attic—after all, works by Caravaggio, Van Gogh, Rembrandt, and Jackson Pollack have been discovered in attics—but not everyone thinks to look in the basement. Yet institutions like Carnegie Observatories often keep the best stuff in the basement.

The underground vault at the Observatories houses the nation’s second-largest, single-institution collection of astronomical glass plates, which are thin sheets of glass with an emulsion image of celestial bodies.  Photographic plates preceded plastic

April 27, 2018

Former Carnegie fellow and current trustee Sandy Faber has been selected to receive the 2018 American Philosophical Society’s Magellanic Premium Medal.  The medal is the nation’s oldest for scientific achievement. It was established in 1786. It is awarded from time to time “ to the author of the best discovery or most useful invention related to navigation, astronomy, or natural philosophy…”

Dr. Faber is the University of California, Santa Cruz, University Professor of Astronomy and Astrophysics and has been a Carnegie trustee since 1985.  After receiving a B.A. in physics from Swarthmore College, she pursued her Ph.D. in astronomy at Harvard, which she received in 1972. Much of

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have improved the

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be used to provide a direct

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter had been at

Guoyin Shen's research interests lie in the quest to establish and to examine models for explaining and controlling the behavior of materials under extreme conditions. His research activities include investigation of phase transformations and melting lines in molecular solids, oxides and metals; polyamorphism in liquids and amorphous materials; new states of matter and their emergent properties under extreme conditions; and the development of enabling high-pressure synchrotron techniques for advancing compression science. 

He obtained a Ph.D. in mineral physics from Uppsala University, Sweden in 1994 and a B.S. in geochemistry from Zhejiang University, China in 1982. For more

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in Canada.