Greg Asner was the first staff scientist hired by the fledgling Department of Global Ecology in 2001. The new department grew out of over 100 years of planet research at Carnegie, including the establishment of the field of ecology, to celebrate 100 years of Carnegie science and  address  the pressing 21st century questions  facing our planet. 

Asner brought a unique approach to the discipline—he marries sophisticated satellite and airborne mapping  technology with traditional gum-shoe fieldwork to develop innovative techniques to measure the Earth.

Asner has pioneered new methods for investigating tropical deforestation, degradation, ecosystem diversity, invasive species, carbon emissions, climate change, and much more. Perhaps his most innovative technology is the Carnegie Airborne Observatory (CAO), which provides a bird’s eye view of our planet, allowing researchers to understand, in unprecedented detail, what is happening in a previously invisible ecological world. The CAO combines laser and spectral instrumentation aboard a fixed-wing aircraft  to reveal an ecosystem’s chemistry, structure, biomass, and biodiversity with stunning 3-D maps allowing surveys over extensive areas in a way not possible before.            

Asner received his bachelor’s, master’s, and Ph.D. from the University of Colorado at Boulder in environmental engineering, biogeography, and environmental biology, respectively. In 2007, Popular Science magazine selected him as one of its Brilliant Ten young scientists. In 2006, his research was designated a Science Magazine Breakthrough of the Year. He was elected to the National Academy of Sciences in 2012.

In addition to his work at the interface of ecosystems, land use and climate change, Asner is heavily engaged in teaching others to use his technology for tropical forest management and conservation. His research takes his team to countries around the world, including Costa Rica, Panama, Colombia, Peru, Madagascar, and South Africa, to name just a few. Investigations in these areas have led to some 250 refereed publications with about 25 more in the pipeline and his results have been covered globally by the popular media. Learn more at http://globalecology.stanford.edu/labs/asnerlab/

Scientific Area: 

Explore Carnegie Science

January 17, 2017

Washington, D.C.—Global Ecology NSF Fellow Mary Whelan has been honored with Carnegie’s fifth Postdoctoral Innovation and Excellence (PIE) Award. These prizes are made through nominations from the department directors and are chosen by the Office of the President. Whelan was awarded the prize for both her scientific and cultural contributions to the Carnegie community.

Whelan’s work on atmospheric trace gas biogeochemistry shows an enormous breadth of skills, knowledge, and curiosity. She asks both “how do we measure it?” and “what does it tell us about the world?”—two scientific questions that are increasingly “siloed”  in the environmental sciences. She spends hours of

November 14, 2016

Washington, DC—New research from two Carnegie scientists has serious implications for the development of management strategies to reduce nutrient runoff in waterways and coastal areas.

Human activities, including agriculture and fossil fuel use, have completely altered the biochemical cycle of nitrogen. In this cycle, nitrogen circulates in various forms through terrestrial, aquatic, and atmospheric systems. In the United States, the amount of nitrogen originating from human sources, particularly fertilizer, is four times the amount that comes from natural sources. The U.S. Environmental Protection Agency estimates that 28 percent of streams and 20 percent of lakes around the

October 4, 2016

Stanford, CA— What would we do differently if sea level were to rise one foot per century versus one foot per decade? Until now, most policy and research has focused on adapting to specific amounts of climate change and not on how fast that climate change might happen.

Using sea-level rise as a case study, researchers at Carnegie’s Department of Global Ecology have developed a quantitative model that considers different rates of sea-level rise, in addition to economic factors, and shows how consideration of rates of change affect optimal adaptation strategies. If the sea level will rise slowly, it could still make sense to build near the shoreline, but if the sea level is going to

September 13, 2016

Stanford, CA—Using software tools developed by Near Zero, a research group hosted by the Carnegie Institution for Science’s Department of Global Ecology, a team of researchers has completed the largest expert survey yet on any energy technology, in this case wind energy.

Near Zero conducts research and assessment of energy and climate issues, focusing on integrating quantitative analysis with expert judgment. In this way, they inform decision-making to accelerate the global transition to a near-zero emission energy system. To support this work, Near Zero has developed open-source software tools to examine where experts agree and disagree and why.

Using Near Zero’s online

No content in this section.

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

Ken

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Gwen Rudie studies the chemical and physical properties of very distant, so-called  high-redshift galaxies and their surrounding circumgalactic medium. She is primarily an observational astronomer working on the analysis and interpretation of high-resolution spectroscopy of high-redshift Quasi Stellar Objects and low to medium-resolution near-infrared and optical spectroscopy of high-redshift galaxies. She is interested in understanding the intergalactic medium as a tool for understanding galaxy evolution and the physical properties of very distant galaxies such as the composition of stars and their star formation rates

Rudie received her AB from Dartmouth College and her Ph D