Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman and team go beyond the lab as well. They study genetic and DNA sequence diversity among primary producers in hot spring mats and the mats’ ability to go from oxygenated to non-oxygenated conditions. Understanding  the physiology and community structure of hot spring microbial mats were probably critical for the early oxygenation of the Earth's atmosphere.

The Grosssman lab is looking toward the future by examining the use of nanoelectrodes and atomic force microscopy to probe the structure and dynamics of the photosynthetic apparatus, and pathways for photosynthetic electron flow in photosynthetic microbes in marine and fresh water environments. One goal of this research is to develop both physical and electrochemical platforms to extract energy from photosynthetic organisms.

Grossman received his B.S.  in biology from Brooklyn College and his Ph. D.  from Indiana University. Before coming to Carnegie as a staff mameberin 1982, he was a postdoctoral fellow at Rockefeller University. For more see https://dpb.carnegiescience.edu/labs/grossman-lab

Scientific Area: 

Explore Carnegie Science

October 4, 2021

Palo Alto, CA—Carnegie’s Devaki Bhaya is part of a Rice University led team that was recently awarded $2.8 million from the National Science Foundation for a five-year project to define the social order of naturally occurring microbial communities.

Unlike the bacterial clones used in laboratory research, naturally occurring bacterial populations are havens of small-scale genetic diversity, making their relationships and evolutionary dynamics of great interest to the scientific community.

“From extremophiles living in deep sea vents to the beneficial bacteria living in the human gut or in association with plant roots, microbial communities are crucial to

September 24, 2021

Palo Alto, CA—Former Carnegie Staff Associate Martin Jonikas, now an Associate Professor of Molecular Biology at Princeton University, was named one of 33 new Howard Hughes Medical Institute (HHMI) Investigators. HHMI recognized Jonikas for his research on photosynthetic algae, which could revolutionize agriculture and biofuels by making crop plants better at converting carbon dioxide from the atmosphere into usable energy sources such as sugars.

Each member of the cohort will receive roughly $9 million over a seven-year term. They were selected for “diving deep into tough questions that span the landscape of biology and medicine.”

Photosynthesis is

Art and science exhibit at Morgan State University
September 7, 2021

Washington, DC—All year round, our lives are shaped by events that were made possible by the often underrecognized work of Black plant scientists. From the refreshment of enjoying a cool scoop of vanilla ice cream on a hot summer day, to the thrill of peering through a microscope on the first day of school, we have Black scientists to thank for these and so many more of the experiences that enrich our minds and nourish our bodies.

Without the work of Edmond Albius, vanilla beans would be too difficult to cultivate for mass consumption. Albius, born an enslaved individual, was freed after his breakthrough, but never received any profits from it, although his discoveries

Plant Cell Atlas logo
September 7, 2021

Palo Alto, CA—The world’s population is growing, and global climate change will reshape our maps—shifting locations where human settlements can sustainably exist and thrive. Plant science can help us understand and mitigate the coming challenges, including fighting hunger, promoting renewable energy, and sequestering carbon pollution from the atmosphere.

But in order to meet the moment, the scientific enterprise must prepare to leap ahead in its understanding of how plant cells function and respond to their environmental conditions. And to successfully advance plant science, the scientific community must foster the next generation of researchers and to ensure

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Ana Bonaca is Staff Member at Carnegie Observatories. Her specialty is stellar dynamics and her research aims to uncover the structure and evolution of our galaxy, the Milky Way, especially the dark matter halo that surrounds it. In her research, she uses space- and ground-based telescopes to measure the motions of stars, and constructs numerical experiments to discover how dark matter affected them.

She arrived in September 2021 from Harvard University where she held a prestigious Institute for Theory and Computation Fellowship. 

Bonaca studies how the uneven pull of our galaxy’s gravity affects objects called globular clusters—spheres made up of a million

Peter Gao's research interests include planetary atmospheres; exoplanet characterization; planet formation and evolution; atmosphere-surface-interior interactions; astrobiology; habitability; biosignatures; numerical modeling.

His arrival in September 2021 continued Carnegie's longstanding tradition excellence in exoplanet discovery and research, which is crucial as the field prepares for an onslaught of new data about exoplanetary atmospheres when the next generation of telescopes come online.

Gao has been a part of several exploratory teams that investigated sulfuric acid clouds on Venus, methane on Mars, and the atmospheric hazes of Pluto. He also

Anne Pommier's research is dedicated to understanding how terrestrial planets work, especially the role of silicate and metallic melts in planetary interiors, from the scale of volcanic magma reservoirs to core-scale and planetary-scale processes.

She joined Carnegie in July 2021 from U.C. San Diego’s Scripps Institution of Oceanography, where she investigated the evolution and structure of planetary interiors, including our own Earth and its Moon, as well as Mars, Mercury, and the moon Ganymede.

Pommier’s experimental petrology and mineral physics work are an excellent addition to Carnegie’s longstanding leadership in lab-based mimicry of the

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation