Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman and team go beyond the lab as well. They study genetic and DNA sequence diversity among primary producers in hot spring mats and the mats’ ability to go from oxygenated to non-oxygenated conditions. Understanding  the physiology and community structure of hot spring microbial mats were probably critical for the early oxygenation of the Earth's atmosphere.

The Grosssman lab is looking toward the future by examining the use of nanoelectrodes and atomic force microscopy to probe the structure and dynamics of the photosynthetic apparatus, and pathways for photosynthetic electron flow in photosynthetic microbes in marine and fresh water environments. One goal of this research is to develop both physical and electrochemical platforms to extract energy from photosynthetic organisms.

Grossman received his B.S.  in biology from Brooklyn College and his Ph. D.  from Indiana University. Before coming to Carnegie as a staff mameberin 1982, he was a postdoctoral fellow at Rockefeller University. For more see https://dpb.carnegiescience.edu/labs/grossman-lab

Scientific Area: 

Explore Carnegie Science

February 19, 2019

Heather Meyer, a postdoctoral fellow in David Ehrhardt’s Plant Biology lab since 2016, has been awarded Carnegie’s twelfth Postdoctoral Innovation and Excellence Award. These prizes are given to postdocs for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community. The nominations are made by the departments and are chosen by the Office of the President. The recipients receive a cash prize and are celebrated at an event at their departments.  

Heather initiated a pioneering scientific project to identify the molecular mechanisms that plants use to sense and respond to seasonal temperatures in order to

February 12, 2019

Washington, DC— Carnegie’s Winslow Briggs, a giant in the field of plant biology who explained how seedlings grow toward light, died on February 11 at Stanford University Medical Center. He was 90.

Briggs joined Carnegie as the Director of the Department of Plant Biology in 1973 after teaching both at Harvard University—where he completed his bachelor’s degree, master’s degree, and Ph.D.—and at Stanford University. He held the position for two decades, establishing himself as a global leader in plant genetics and physiology, publishing landmark research on the molecular mechanisms that plants and other organisms use to sense and respond to light

Sue Rhee, Thomas Clandinin and Miriam B. Goodman discuss the NeuroPlant project over a tobacco plant in the greenhouse. (Image credit: L.A. Cicero)
January 22, 2019

Stanford, CA—For millennia, humanity has used medicinal plants and plant-based compounds to treat a variety of neurological ailments including epilepsy, mania, migraines, and bipolar disorder. Now a team of researchers from Carnegie and Stanford University is using microscopic worms to understand what these plant-derived molecules are and how they affect the brain’s biochemistry.

Called the NeuroPlant project, these efforts could lead to new, more efficient ways to develop drugs to treat a variety of neurological and psychiatric diseases in humans. Their work is funded by a Big Ideas grant from the Wu Tsai Neurosciences Institute.

“We’re interested

A bright field image of the anemone Aiptasia populated with its symbiotic algae.
December 6, 2018

Stanford, CA—How much of the ability of a coral reef to withstand stressful conditions is influenced by the type of algae that the corals hosts?

Corals are marine invertebrates from the phylum called cnidarians that build large exoskeletons from which colorful reefs are constructed. But this reef-building is only possible because of a mutually beneficial relationship between the coral and various species of single-celled algae called dinoflagellates that live inside the cells of coral polyps.

The algae are photosynthetic—meaning capable of converting the Sun’s energy into chemical energy for food, just like plants. And the exchange of nutrients between the

No content in this section.

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be