Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to shed light on how heat is conducted through the Earth. He also investigates different conditions under which superconductivity can be achieved. 

A superconducting material does not restrict electron movement, the essence of electricity. However, typically these materials have to be cooled below a very low, so-called, transition temperature, which often makes them impractical for widespread use. Goncharov was part of a team that found, for the first time that, in addition to chemical manipulation, the superconducting state can be induced by high pressure in so-called high-temperature superconductors, a potential boost to their eventual use.

Goncharov conducts his experiments using optical spectroscopy and advanced probes such as synchrotron micro-diffraction and Raman spectroscopy. Optical spectroscopy uses light to discern “fingerprints” of a sample’s chemistry.  Synchrotron micro-diffraction requires huge facilities that accelerate particles to convert energy to high-energy light beams, which is then broken up by a sample into a distinct pattern that tells researchers about many characteristics. Raman spectroscopy is used to observe features like the rotational and vibrational behavior of a material.  

Goncharove  received  a B.A. amd M.S. in physics from Moscow Institute for Physics and Technology in 1979 and a Ph. D. in physics from the Russian Academy of Sciences in 1981. He was a research fellow at the Instituted of Crystallography, Academy of Science in Moscow from 1982 to 1989, and then a senior research scientist there from 1989 to 1993. He came to Carnegie as a fellow in 1993, became a senior research associate in 1995, then a senior research scientist in 1999. From 2002 to 2005 he was a staff scientist at Lawrence Livermore National Laboratory. He rejoined Carnegie as a staff scientist in 2005.

Scientific Area: 

Explore Carnegie Science

February 6, 2017

Washington, DC— Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called the noble gases, which are called that because of their chemical aloofness—they don’t easily form compounds with other elements. Helium, widely believed to be the most inert element, has no stable compounds under normal conditions. 

Now, an international team of researchers led by Skoltech’s Artem R. Oganov (also a professor at Stony Brook University and head of Computational Materials Discovery laboratory at Moscow Institute of Physics and Technology) has predicted two stable helium compounds—

February 2, 2017

Washington, D.C.—In Earth’s interior, water (H2O) plays an important role in rock physics, but geoscientists rarely treat water in its constituent forms, that is as hydrogen plus oxygen. New work from a team led by Carnegie’s Dave Mao has identified that hydrogen can escape from the water under conditions found in Earth’s lower mantle leading to a new paradigm in lower-mantle chemistry. Their results were published in Proceedings of the National Academy of Sciences, U.S.A.          

In the atmosphere, hydrogen is a colorless, transparent gas. It bonds with oxygen to form water, which fuels the biosphere on the Earth’s surface. Deep in the rocky world beneath our feet, so-called

February 1, 2017

Yingwei Fei, a high-pressure experimentalist at the Geophysical Laboratory, and Peter Driscoll, theoretical geophysicist in the Department of Terrestrial Magnetism, have been awarded a Carnegie Science Venture Grant for their project “Direct Shock Compression of Pre-synthesized Mantle Mineral to Super-Earth Interior Conditions.”

The project is an entirely new approach to investigate the properties and dynamics of super-Earths—extrasolar planets with masses between one and 10 times that of Earth. They will use the world’s most powerful magnetic, pulsed-power radiation source, called the Z Machine at Sandia National Laboratory, to generate shock waves that can simulate the intense

January 23, 2017

Washington, D.C.--Phase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science* have discovered a new phenomenon of so-called metastability in a liquid phase. A metastable liquid is not quite stable. This state is common in supercooled liquids, which are liquids that cool below the freezing point without turning into a solid or a crystal. Now, scientists report the first experimental evidence of creating a metastable liquid directly by the opposite approach: melting a high-pressure solid crystal of the metal bismuth via a decompression process below its melting point

No content in this section.

The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois.

The integrated HPCAT facility has established four operating beamlines in nine hutches An array of novel X-ray diffraction—imaging at tiny scales--and spectroscopic techniques to reveal chemistry,  has been integrated with high pressure and extreme temperature instrumentation.

With a multidisciplinary approach and multi-institution collaborations, the high-pressure program at the HPCAT has enabeld myriad scientific

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech, Cornell, Penn State, Lehigh, and Colorado School of Mines—and will use facilities built and managed by the Geophysical Laboratory at Argonne, Brookhaven, and Oak Ridge National Laboratories. Nine Geophysical Laboratory scientists will participate in the effort, along with Russell Hemley as director and Tim Strobel as associate director.

To achieve their goal, EFree personnel synthesize

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Gwen Rudie studies the chemical and physical properties of very distant, so-called  high-redshift galaxies and their surrounding circumgalactic medium. She is primarily an observational astronomer working on the analysis and interpretation of high-resolution spectroscopy of high-redshift Quasi Stellar Objects and low to medium-resolution near-infrared and optical spectroscopy of high-redshift galaxies. She is interested in understanding the intergalactic medium as a tool for understanding galaxy evolution and the physical properties of very distant galaxies such as the composition of stars and their star formation rates

Rudie received her AB from Dartmouth College and her Ph D