Stanford, CA—We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are...
Explore this Story
Stanford, CA— A feature thought to make plants sensitive to drought could actually hold the key to them coping with it better, according to new findings published by eLife, from Kathryn Barton...
Explore this Story
Stanford, CA—The Howard Hughes Medical Institute (HHMI) and the Simons Foundation have awarded José Dinneny, of Carnegie’s Department of Plant Biology an HHMI-Simons Faculty...
Explore this Story
Photosynthesis
Learning about ‪photosynthesis is fun! Life as we know it on Earth couldn't exist without this amazing process. And what better way to understand and appreciate everything that plants and algae...
Explore this Story
Plants have tiny pores on their leaves called stomata—Greek for mouths—through which they take in carbon dioxide from the air and from which water evaporates. New work from the lab of...
Explore this Story
Carnegie, Carnegie Science, Carnegie Institution for Science, plant biology, crown roots, Jose Sebastian
Stanford, CA— With a growing world population and a changing climate, understanding how agriculturally important plants respond to drought is crucial. New work from a team led by Carnegie...
Explore this Story
Stanford, CA— Plants have tiny pores on their leaves called stomata—Greek for mouths—through which they take in carbon dioxide from the air and from which water evaporates. New work...
Explore this Story
Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Chlamydomonas, Pyrenoid, EPYC1
Stanford, CA— Algae may hold the key to feeding the world’s burgeoning population. Don’t worry; no one is going to make you eat them. But because they are more efficient than most...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20%...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018. Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants...
Meet this Scientist
You May Also Like...
Scientists, including Carnegie’s David Ehrhardt and Heather Cartwright, have exploited a way to watch protein trafficking to make cellulose in the formation of plant cell walls in real time.
Explore this Story
For millennia, humanity has used medicinal plants and plant-based compounds to treat a variety of neurological ailments including epilepsy, mania, migraines, and bipolar disorder. Now a team of...
Explore this Story
Inside every seed is the embryo of a plant, and in most cases also a storage of food needed to power initial growth of the young seedling. If not enough food is delivered from the leaves to the seed...
Explore this Story

Explore Carnegie Science

Artwork is courtesy of Mark Belan | artscistudios.com.
September 22, 2022

Palo Alto, CA—Climate change and habitat destruction may have already caused the loss of more than one-tenth of the world’s terrestrial genetic diversity, according to new research led by Carnegie’s Moises Exposito-Alonso and published in Science. This means that it may already be too late to meet the United Nations’ proposed target, announced last year, of protecting 90 percent of genetic diversity for every species by 2030, and that we have to act fast to prevent further losses.

Several hundred species of animals and plants have gone extinct in the industrialized age and human activity has impacted or shrunk half of Earth’s ecosystems, affecting

Tidestromia oblongifolia in winter, Death Valley National Park, CA, USA, Photo b
August 23, 2022

Palo Alto, CA— Water is inextricably linked to our understanding of life—it makes up most of our planet’s surface and organisms across the tree of life depend on it to function. Yet the ability to survive extremely dry conditions for long periods is crucial to the life cycles of many species—including in plants, which can reproduce from desiccated pollen grains and grow from dried-out seeds.

“There are some desert plants and micro-animals, like tardigrades, which can lose up to 90 percent of their water and resume normal biological function within hours of being rehydrated. We want to know how they do it,” said Carnegie’s Sue Rhee, who was

Stephanie Hampton
August 12, 2022

Washington, DC— Aquatic ecologist Stephanie Hampton joined Carnegie as Deputy Director of Carnegie’s newly launched Division of Biosphere Sciences and Engineering at the end of July. She arrived from the National Science Foundation, where she was the director of the Division of Environmental Biology. She was also a professor and the former director of an interdisciplinary environmental research center at Washington State University.

“Stephanie’s experience leading the primary funder of basic ecological and evolutionary research in the U.S. has given her a 10-thousand-foot view of the field, which will help us as we implement a new, cross-disciplinary vision

Illustration of a plant growing on a computer chip purchased from Shutterstock.
June 13, 2022

Palo Alto, CA— New work led by Carnegie’s Zhiyong Wang untangles a complex cellular signaling process that’s underpins plants’ ability to balance expending energy on growth and defending themselves from pathogens. These findings, published in Nature Plants, show how plants use complex cellular circuits to process information and respond to threats and environmental conditions.  

“Plants don’t have brains like us, and they may be fixed in place and unable to flee from predators or pathogens, but don’t feel sorry for them, because they’ve evolved an incredible network of information-processing circuits that enable them to ‘

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex