Margaret McFall-Ngai
Washington, DC—Pioneering microbiome specialist Margaret McFall-Ngai has been named the inaugural director of Carnegie’s newly launched research division focused on life and environmental...
Explore this Story
Rose rust on plant leaves. Image purchased from Shutterstock.
Palo Alto, CA—New work led by Carnegie’s Kangmei Zhao and Sue Rhee reveals a new mechanism by which plants are able to rapidly activate defenses against bacterial infections. This...
Explore this Story
Palo Alto, CA—Carnegie’s Devaki Bhaya is part of a Rice University led team that was recently awarded $2.8 million from the National Science Foundation for a five-year project to define...
Explore this Story
Palo Alto, CA—Former Carnegie Staff Associate Martin Jonikas, now an Associate Professor of Molecular Biology at Princeton University, was named one of 33 new Howard Hughes Medical Institute...
Explore this Story
Art and science exhibit at Morgan State University
Washington, DC—All year round, our lives are shaped by events that were made possible by the often underrecognized work of Black plant scientists. From the refreshment of enjoying a cool scoop...
Explore this Story
Plant Cell Atlas logo
Palo Alto, CA—The world’s population is growing, and global climate change will reshape our maps—shifting locations where human settlements can sustainably exist and thrive. Plant...
Explore this Story
Botryococcus braunii by © Karl Bruun posted on the AlgaeBase website.
Palo Alto, CA—Carnegie’s Arthur Grossman and Stanford University’s Ellen Yeh were awarded a $900, 000 grant this spring from the university’s public-private partnership...
Explore this Story
3D reconstruction of an Arabidopsis embryo courtesy George W. Bassel.
Palo Alto, CA—Dehydrated plant seeds can lay dormant for long periods—over 1,000 years in some species—before the availability of water can trigger germination. This protects the...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20%...
Meet this Scientist
You May Also Like...
During the daytime, plants convert the Sun’s energy into sugars using photosynthesis, a complex, multi-stage biochemical process. New work from a team including Carnegie’s Mark Heinnickel...
Explore this Story
A plant's roots grow and spread into the soil, taking up necessary water and minerals. The tip of a plant's root is a place of active cell division followed by cell elongation, with different...
Explore this Story
Carnegie’s Moises Exposito-Alonso was selected for the Heidelberg Academy of Science’s Karl Freudenberg Prize in recognition of outstanding early career achievements in the...
Explore this Story

Explore Carnegie Science

Margaret McFall-Ngai
November 17, 2021

Washington, DC—Pioneering microbiome specialist Margaret McFall-Ngai has been named the inaugural director of Carnegie’s newly launched research division focused on life and environmental sciences, which will deploy an integrated, molecular-to-global approach to tackling the challenges of sustainability, resilience, and adaptation to a changing climate. McFall-Ngai will join the institution in January, 2022, from the University of Hawai‘i at Mānoa, where she is a professor at the Pacific Biosciences Research Center’s Kewalo Marine Laboratory and the center’s director emerita.

“Margaret’s exemplary research and groundbreaking vision are the

Rose rust on plant leaves. Image purchased from Shutterstock.
October 26, 2021

Palo Alto, CA—New work led by Carnegie’s Kangmei Zhao and Sue Rhee reveals a new mechanism by which plants are able to rapidly activate defenses against bacterial infections. This understanding could inspire efforts to improve crop yields and combat global hunger.

“Understanding how plants respond to stressful environments is critical for developing strategies to protect important food and biofuel crops from a changing climate,” Rhee explained. 

Published in eLife, new work from Zhao and Rhee, along with Carnegie’s Benjamin Jin and Stanford University’s Deze Kong and Christina Smolke, investigated how production of a plant defense

October 4, 2021

Palo Alto, CA—Carnegie’s Devaki Bhaya is part of a Rice University led team that was recently awarded $2.8 million from the National Science Foundation for a five-year project to define the social order of naturally occurring microbial communities.

Unlike the bacterial clones used in laboratory research, naturally occurring bacterial populations are havens of small-scale genetic diversity, making their relationships and evolutionary dynamics of great interest to the scientific community.

“From extremophiles living in deep sea vents to the beneficial bacteria living in the human gut or in association with plant roots, microbial communities are crucial to

September 24, 2021

Palo Alto, CA—Former Carnegie Staff Associate Martin Jonikas, now an Associate Professor of Molecular Biology at Princeton University, was named one of 33 new Howard Hughes Medical Institute (HHMI) Investigators. HHMI recognized Jonikas for his research on photosynthetic algae, which could revolutionize agriculture and biofuels by making crop plants better at converting carbon dioxide from the atmosphere into usable energy sources such as sugars.

Each member of the cohort will receive roughly $9 million over a seven-year term. They were selected for “diving deep into tough questions that span the landscape of biology and medicine.”

Photosynthesis is

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman

Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of what its genes do and how or why they do it. And understanding this evolution can help develop new crop strains to adapt to climate change.  

Sue Rhee wants to uncover the molecular mechanisms underlying adaptive traits in plants to understand how these traits evolved. A bottleneck has been the limited understanding of the functions of most plant genes. Rhee’s group is

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future