the sea anemone Aiptasia pallida that is hosting the algae, which are responsible for the red fluorescence spots observed in the body of the animal.  Image courtesy of Tingting Xiang.
Palo Alto, CA—What factors govern algae’s success as “tenants” of their coral hosts both under optimal conditions and when oceanic temperatures rise? A Victoria University of...
Explore this Story
A teosinte plant growing in a corn field on the Stanford University campus, courtesy of Yongxian Lu.
Palo Alto, CA— Determining how one species becomes distinct from another has been a subject of fascination dating back to Charles Darwin. New research led by Carnegie’s Matthew Evans and...
Explore this Story
Plant cells under microscope. Shutterstock.
Palo Alto, CA—Photosynthesis makes our atmosphere oxygen-rich and forms the bedrock of our food supply. But under changing or stressful environmental conditions, the photosynthetic process can...
Explore this Story
The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a...
Explore this Story
Chlamydomonas
Palo Alto, CA—The creation of new library of mutants of the single-celled photosynthetic green alga Chlamydomonas reinhardtii enabled a Carnegie- and Princeton University-led team of...
Explore this Story
Heather Meyer, a postdoctoral fellow in David Ehrhardt’s Plant Biology lab since 2016, has been awarded Carnegie’s twelfth Postdoctoral Innovation and Excellence Award. These prizes are...
Explore this Story
Washington, DC— Carnegie’s Winslow Briggs, a giant in the field of plant biology who explained how seedlings grow toward light, died on February 11 at Stanford University Medical Center....
Explore this Story
Sue Rhee, Thomas Clandinin and Miriam B. Goodman discuss the NeuroPlant project over a tobacco plant in the greenhouse. (Image credit: L.A. Cicero)
Stanford, CA—For millennia, humanity has used medicinal plants and plant-based compounds to treat a variety of neurological ailments including epilepsy, mania, migraines, and bipolar disorder....
Explore this Story

Pages

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director...
Explore this Project
Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant...
Explore this Project
Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20%...
Meet this Scientist
Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
You May Also Like...
Carnegie’s Arthur Grossman teamed up with engineers at Stanford University (including Fritz Prinz and graduate students Zubin Huang and Witchukorn Phuthong) to develop atomic force...
Explore this Story
Science News magazine has selected José Dinneny, of Carnegie’s Department of Plant Biology, as one of ten young scientists to watch in 2017. The researchers were selected because they...
Explore this Story
Heather Meyer, a postdoctoral fellow in David Ehrhardt’s Plant Biology lab since 2016, has been awarded Carnegie’s twelfth Postdoctoral Innovation and Excellence Award. These prizes are given to...
Explore this Story

Explore Carnegie Science

the sea anemone Aiptasia pallida that is hosting the algae, which are responsible for the red fluorescence spots observed in the body of the animal.  Image courtesy of Tingting Xiang.
June 19, 2019

Palo Alto, CA—What factors govern algae’s success as “tenants” of their coral hosts both under optimal conditions and when oceanic temperatures rise? A Victoria University of Wellington-led team of experts that includes Carnegie’s Arthur Grossman investigates this question.

Corals are marine invertebrates that build large exoskeletons from which colorful reefs are constructed. But this reef-building is only possible because of a mutually beneficial relationship between the coral and various species of single-celled algae called dinoflagellates that live inside the cells of coral polyps.

These algae are photosynthetic, which means that like

A teosinte plant growing in a corn field on the Stanford University campus, courtesy of Yongxian Lu.
May 24, 2019

Palo Alto, CA— Determining how one species becomes distinct from another has been a subject of fascination dating back to Charles Darwin. New research led by Carnegie’s Matthew Evans and published in Nature Communications elucidates the mechanism that keeps maize distinct from its ancient ancestor grass, teosinte.

Speciation requires isolation. Sometimes this isolation is facilitated by geography, such as mountains chains or islands that divide two populations and prevent them from interbreeding until they become different species. But in other instances, the barriers separating species are physiological factors that prevent them from successfully mating, or from

Plant cells under microscope. Shutterstock.
May 23, 2019

Palo Alto, CA—Photosynthesis makes our atmosphere oxygen-rich and forms the bedrock of our food supply. But under changing or stressful environmental conditions, the photosynthetic process can become unbalanced, resulting in an excess of highly reactive oxygen molecules that could cause cellular damage if they aren’t neutralized.  

New work in Proceedings of the National Academy of Sciences led by Carnegie’s Shai Saroussi and Arthur Grossman explores how the photosynthetic algae Chlamydomonas shields itself from this potential danger. Understanding how plants minimize self-inflicted harm in this scenario could help scientists engineer crops with improved

May 16, 2019

The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a venture grant for their proposal Carbon-rich Super-Earths: Constraining Internal Structure from Dynamic Compression Experiments. Plant Biology’s Sue Rhee and Global Ecology’s Joe Berry and Jen Johnson were awarded a Venture Grant for their project Thermo-adaptation of Photosynthesis in Extremophilic Desert Plants.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions.

No content in this section.

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Several years ago, Carnegie researchers  constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for

Evolutionary geneticist Moises Exposito-Alonso joins the Department of Plant Biology as a staff associate in the summer of 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to produce cells called spores. Each spore divides forming a single set of chromosomes (haploid) --the gametophyte--which produces the sperm and egg cells.

Evans studies how the haploid genome is required for normal egg and sperm function. In flowering plants, the female gametophyte, called the embryo sac, consists of four cell types: the egg cell, the central cell, and two types of

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman