Palo Alto, CA—Senior scientist Arthur Grossman of Carnegie’s Department of Plant Biology was part of a team* awarded a three-year grant, with $100,000 for each year, from the International Human...
Explore this Story
Stanford, CA—Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients.  New work from Carnegie and Stanford University’s José Dinneny shows that one...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Stanford University
Washington, DC— Without eyes, ears, or a central nervous system, plants can perceive the direction of environmental cues and respond to ensure their survival. For example, roots need to extend...
Explore this Story
Science News magazine has selected José Dinneny, of Carnegie’s Department of Plant Biology, as one of ten young scientists to watch in 2017. The researchers were selected because they are likely to...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Donald Danforth Plant Science Center
Stanford, CA— Carnegie Plant Biology Acting Director Sue Rhee and staff scientist...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Max Planck Institute of Biochemistry
Stanford, CA— How do green algae grow so quickly?  Two new collaborations offer insight into how these organisms siphon carbon dioxide from the air for use in photosynthesis, a key factor in their...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Palo Alto, CA— The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone—exposed to fluctuating temperatures, high UV radiation,...
Explore this Story
Palo Alto, CA— Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe. And yet fewer than 10 percent of the algae have been formally...
Explore this Story

Pages

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf...
Explore this Project
Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii....
Explore this Project
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of...
Meet this Scientist
You May Also Like...
AudioStanford, CA—Soil is a microscopic maze of nooks and crannies that hosts a wide array of life. Plants explore this environment by developing a complex branched network of roots that tap into...
Explore this Story
Stanford, CA—Cereals are grasses that produce grains, the bulk of our food supply. Carnegie’s Plant Biology Department is releasing genome-wide metabolic complements of several cereals including rice...
Explore this Story
Washington, D.C. —Until now it has not been clear how salt, a scourge to agriculture, halts the growth of the plant-root system. A team of researchers, led by the Carnegie Institution’s José Dinneny...
Explore this Story

Explore Carnegie Science

April 9, 2018

Palo Alto, CA—Senior scientist Arthur Grossman of Carnegie’s Department of Plant Biology was part of a team* awarded a three-year grant, with $100,000 for each year, from the International Human Frontier Science Program (HFSP) Organization. The team will use an integrated approach to investigate how light and metabolic signals control photosynthetic processes in algae.  

HFSP’s collaborative research grants are given for endeavors that address “complex mechanisms of living organisms.” The program only supports “cutting-edge, risky projects” conducted by globally distributed teams.

Grossman has been studying algae for years.  Algae dominate the oceans, produce half of the

February 16, 2018

Stanford, CA—Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients.  New work from Carnegie and Stanford University’s José Dinneny shows that one of these challenges, salinity, can cause root cells to explode if the risk is not properly sensed. The findings, published by Current Biology, could help scientists improve agricultural productivity in saline soils, which occur across the globe and reduce crop yields.

Salts build up in soils from natural causes, such as sea spray, or can be introduced as a consequence of irrigation and poor land management. Salinity has deleterious effects on plant health and limits crop yields,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Stanford University
January 9, 2018

Washington, DC— Without eyes, ears, or a central nervous system, plants can perceive the direction of environmental cues and respond to ensure their survival.

For example, roots need to extend through the maze of nooks and crannies in the soil toward sources of water and nutrients. The various ways that plants guide this branching to take advantage of their environment is of great interest to scientists and of potential use by farmers in need of crops that produce more food with fewer resources.

Carnegie and Stanford University biologist José Dinneny has spent years studying how root growth responds to water, particularly through a phenomenon called hydropatterning, which

October 4, 2017

Science News magazine has selected José Dinneny, of Carnegie’s Department of Plant Biology, as one of ten young scientists to watch in 2017. The researchers were selected because they are likely to make big discoveries. The investigators are spotlighted in the October 14 edition of Science News available online today at www.sciencenews.org/SN10.

Dinneny looks at the mechanisms plants use to sense water availability and survive stressful conditions such as drought and high salinity. He investigates developmental pathways and molecular genetic mechanisms involved in shaping the plant to suit the environment. His work has included the processes of water-stress responses in plants at

No content in this section.

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to achieve broad, durable

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman and

One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for developing crops for the changing climate.

The Dinneny  lab focuses on understanding how developmental processes such as cell-type specification regulate responses to environmental change. Most studies have considered the organ or even the whole organism as a single responsive unit and ignore the potential diversity of responses by the various cell-types composing an organism. Dinneny has

Zhiyong Wang was appointed acting director of Plant Biology in 2018. Steroids are important hormones in both animals and plants. They bulk up plants just as they do human athletes, but the pathway of molecular signals that tell the genes to boost growth and development is more complex in plant cells than in animal cells. Unlike animals, plants do not have glands to produce and secrete hormones. Rather, each plant cell has the ability to generate hormones. Another difference is that animal cells typically have receptor molecules that respond to select steroids located within a cell's nucleus. In plants, steroid receptors are anchored to the outside surface of a cell’s outer membrane—the

Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve, share resources. To these ends, she focuses on one-celled, aquatic cyanobacteria, in the lab with model organisms and with organisms in naturally occurring communities.

 Phototaxis is the ability of organisms to move directionally in response to a light source.  Many cyanobacteria exhibit phototaxis, both towards and away from light. The ability to move into optimal light for