Stanford, CA— Plant's leaves are sealed with a gas-tight wax layer to prevent water loss. Plants breathe through microscopic pores called stomata (Greek for mouths) on the surfaces of leaves. Over 40...
Explore this Story
Stanford, CA— Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world’s most efficient mining companies. Roots live in darkness and direct the activities of...
Explore this Story
  Stanford, CA – Scientists at Carnegie’s Department of Plant Biology have made the first real-time observations of sugars in the cells of intact and living plant tissues. With the help of...
Explore this Story

Pages

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf...
Explore this Project
Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii....
Explore this Project
Young investigator Martin Jonikas has broad ambitions: to transform our fundamental understanding of photosynthetic organisms by developing game-changing tools. In the long run, his lab aims to increase photosynthetic efficiency of crops, which could improve food production around the world. When...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for...
Meet this Scientist
You May Also Like...
Stanford, CA — The Plant Metabolic Network (http://www.plantcyc.org/), which is based at Carnegie’s Department of Plant Biology, has launched four new online databases that offer an unprecedented...
Explore this Story
Stanford, CA— Once a mother plant releases its embryos to the outside world, they have to survive on their own without family protection. To ensure successful colonization by these vulnerable...
Explore this Story
AudioStanford, CA—All living cells are held together by membranes, which provide a barrier to the transport of nutrients. They are also the communication platform connecting the outside world to the...
Explore this Story

Explore Carnegie Science

January 30, 2017

Stanford, CA—New work from Carnegie’s Shouling Xu and Zhiyong Wang reveals that the process of synthesizing many important master proteins in plants involves extensive modification, or “tagging” by sugars after the protein is assembled. Their work uncovers both similarity and distinction between plants and animals in their use of this protein modification. It is published by Proceedings of the National Academy of Sciences.

The blueprint for making all proteins is encoded in DNA. The genetic code tells the cellular protein-making apparatus the correct order in which to string together the amino acids that are the building blocks of every protein. Often, after their DNA code has

Carnegie Science, Carnegie Institution, Carnegie Institution for Science
December 14, 2016

Stanford, CA—Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our environment and food supply.

For many plants, even a small increase in average temperature can profoundly affect their growth and development. In the often-studied mustard plant called Arabidopsis, elevated temperatures cause the plants to grow longer stems and thinner leaves in order to cope with the heat stress.

New work led by Carnegie’s Zhiyong Wang uncovers the system by which plants regulate their response to heat differently between daytime and nighttime. It is published by

October 11, 2016

Stanford, CA—We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred between organisms.

Sometimes a “host” organism can obtain genes from another organism that resides within its own cell (called an endosymbiont) through a process known as endosymbiotic gene transfer. At other times, an organism can obtain genes from a creature that lives in the surrounding environment, or from something that it eats, which is called horizontal gene transfer.

Furthermore, some levels of gene transfer can result in extensive loss of genes and genome reduction,

October 4, 2016

Stanford, CA— A feature thought to make plants sensitive to drought could actually hold the key to them coping with it better, according to new findings published by eLife, from Kathryn Barton of the Carnegie Institution for Science (Department of Plant Biology).

 Plants that are resistant to the hormone abscisic acid (ABA) have until now been understood to be bad at coping with drought. However, Barton and her team have now discovered ABA-resistant varieties that grow better than their normal neighbors when water is scarce. The new research suggests breeders should explore them for “stay green” traits.

 “When breeders are looking for plants able to withstand drought, they

No content in this section.

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions to genes for which no function had

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in repeating units. The structure responsible for

Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of what its genes do and how or why they do it. And understanding this evolution can help develop new crop strains to adapt to climate change.  

Sue Rhee wants to uncover the molecular mechanisms underlying adaptive traits in plants to understand how these traits evolved. A bottleneck has been the limited understanding of the functions of most plant genes. Rhee’s group is building genome-wide

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman and

Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of glucose, sucrose, ammonium, amino acid, and nucleotide transport in plants.

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell’s outer membrane, which seals and protects all living cells, to the cell’s interior. These transported molecules include sugars, which can be used to fuel growth or to respond to chemical signals of