Stanford, CA—A plant's roots grow and spread into the soil, taking up necessary water and minerals. The tip of a plant's root is a place of active cell division followed by cell elongation, with...
Explore this Story
Stanford, CA— Inside every seed is the embryo of a plant, and in most cases also a storage of food needed to power initial growth of the young seedling. A seed consists mainly of carbohydrates and...
Explore this Story
Stanford, CA—Photosynthesis is the process by which plants convert energy from the sunlight into chemical energy in the form of sugars. These sugars are used by plants to grow and function, as well...
Explore this Story
Stanford, CA—Photosynthesis is probably the most well-known aspect of plant biochemistry. It enables plants, algae, and select bacteria to transform the energy from sunlight during the daytime into...
Explore this Story
Stanford, CA— Proteins are the machinery that accomplishes almost every task in every cell in every living organism. The instructions for how to build each protein are written into a cell’s DNA. But...
Explore this Story
Stanford, CA—When it comes to cellular architecture, function follows form. Plant cells contain a dynamic cytoskeleton which is responsible for directing cell growth, development, movement, and...
Explore this Story
Each year, the journal The Scientist ranks academic research institutions across the US. This year, Plant Biology is among the top 5. We will make every effort to keep this place among the most...
Explore this Story

Pages

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf...
Explore this Project
Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant...
Explore this Project
Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is...
Explore this Project
It’s common knowledge that light is essential for plants to perform photosynthesis—converting light energy into chemical energy by transforming carbon dioxide and water into sugars for fuel. Plants maximize the process by bending toward the light in a process called phototropism, which is...
Meet this Scientist
Matthew Evans wants to provide new tools for plant scientists to engineer better seeds for human needs. He focuses on one of the two phases to their life cycle. In the first phase, the sporophyte is the diploid generation—that is with two similar sets of chromosomes--that undergoes meiosis to...
Meet this Scientist
Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of...
Meet this Scientist
You May Also Like...
AudioStanford, CA—Plants spend their entire lifetime rooted to one spot. When faced with a bad situation, such as a swarm of hungry herbivores or a viral outbreak, they have no option to flee but...
Explore this Story
Stanford, CA— Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world’s most efficient mining companies. Roots live in darkness and direct the activities of...
Explore this Story
AudioStanford, CA—All living cells are held together by membranes, which provide a barrier to the transport of nutrients. They are also the communication platform connecting the outside world to the...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science
December 14, 2016

Stanford, CA—Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our environment and food supply.

For many plants, even a small increase in average temperature can profoundly affect their growth and development. In the often-studied mustard plant called Arabidopsis, elevated temperatures cause the plants to grow longer stems and thinner leaves in order to cope with the heat stress.

New work led by Carnegie’s Zhiyong Wang uncovers the system by which plants regulate their response to heat differently between daytime and nighttime. It is published by

October 11, 2016

Stanford, CA—We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred between organisms.

Sometimes a “host” organism can obtain genes from another organism that resides within its own cell (called an endosymbiont) through a process known as endosymbiotic gene transfer. At other times, an organism can obtain genes from a creature that lives in the surrounding environment, or from something that it eats, which is called horizontal gene transfer.

Furthermore, some levels of gene transfer can result in extensive loss of genes and genome reduction,

October 4, 2016

Stanford, CA— A feature thought to make plants sensitive to drought could actually hold the key to them coping with it better, according to new findings published by eLife, from Kathryn Barton of the Carnegie Institution for Science (Department of Plant Biology).

 Plants that are resistant to the hormone abscisic acid (ABA) have until now been understood to be bad at coping with drought. However, Barton and her team have now discovered ABA-resistant varieties that grow better than their normal neighbors when water is scarce. The new research suggests breeders should explore them for “stay green” traits.

 “When breeders are looking for plants able to withstand drought, they

September 22, 2016

Stanford, CA—The Howard Hughes Medical Institute (HHMI) and the Simons Foundation have awarded José Dinneny, of Carnegie’s Department of Plant Biology an HHMI-Simons Faculty Scholar grant. He is one of 84 scientists chosen out of some 1,400 applicants in a new program that the Howard Hughes Medical Institute (HHMI), the Simons Foundation, and the Bill & Melinda Gates Foundation have created. The grant will provide $250,000 per year for five years, in addition to overhead expenses, for an award total of $1,500,000.

The award will be funded by the Simons Foundation and administered by the Howard Hughes Medical Institute. Faculty Scholars are “early-career scientists who have

No content in this section.

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions to genes for which no function had

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to achieve broad, durable

Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of glucose, sucrose, ammonium, amino acid, and nucleotide transport in plants.

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell’s outer membrane, which seals and protects all living cells, to the cell’s interior. These transported molecules include sugars, which can be used to fuel growth or to respond to chemical signals of

One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for developing crops for the changing climate.

The Dinneny  lab focuses on understanding how developmental processes such as cell-type specification regulate responses to environmental change. Most studies have considered the organ or even the whole organism as a single responsive unit and ignore the potential diversity of responses by the various cell-types composing an organism. Dinneny has

Young investigator Martin Jonikas has broad ambitions: to transform our fundamental understanding of photosynthetic organisms by developing game-changing tools. In the long run, his lab aims to increase photosynthetic efficiency of crops, which could improve food production around the world.

When photosynthesis first evolved, the atmosphere contained much more carbon dioxide and much less oxygen than it does today. As a result, the photosynthetic machinery of many organisms may not be completely optimized for today’s environment.

The protein responsible for fixing carbon dioxide—called Rubisco—worked very well in the Earth’s early atmosphere. As photosynthetic organisms

Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of what its genes do and how or why they do it. And understanding this evolution can help develop new crop strains to adapt to climate change.  

Sue Rhee wants to uncover the molecular mechanisms underlying adaptive traits in plants to understand how these traits evolved. A bottleneck has been the limited understanding of the functions of most plant genes. Rhee’s group is building genome-wide