In 1903 the Carnegie Institution established a Desert Laboratory to explore the properties of desert plants. From that humble stone building in Tucson, Arizona, eventually emerged our spectacular...
Explore this Story
Scientists, including Carnegie’s David Ehrhardt and Heather Cartwright, have exploited a way to watch protein trafficking to make cellulose in the formation of plant cell walls in real time.
Explore this Story
Washington, DC— Carnegie’s Zhiyong Wang will receive the Humboldt Research Award, one of Germany’s most-prestigious prizes. Granted by the Alexander von Humboldt Foundation up to 100 times each year...
Explore this Story
Stanford, CA— New work from a team including Carnegie’s Devaki Bhaya and Michelle Davison used massive DNA sequencing of bacterial populations that grow in the hot springs in Yellowstone National...
Explore this Story
New work from a multidisciplinary team of scientists used massive DNA sequencing of bacterial populations that grow in the hot springs in Yellowstone National Park to determine their genetic...
Explore this Story
Stanford, CA— Carnegie’s David Ehrhardt has been awarded an honorary fellowship of the Royal Microscopical Society. It was announced during the society’s Botanical Microscopy 2015 meeting at Exeter...
Explore this Story

Pages

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf...
Explore this Project
Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii....
Explore this Project
Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of...
Meet this Scientist
Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell...
Meet this Scientist
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
You May Also Like...
Plants form a vast network of below-ground roots that search soil for needed resources. The structure and function of this root network can be highly adapted to particular environments. Excavation of...
Explore this Story
Stanford, CA—Photosynthesis is probably the most well-known aspect of plant biochemistry. It enables plants, algae, and select bacteria to transform the energy from sunlight during the daytime into...
Explore this Story
Washington, DC— Carnegie’s Zhiyong Wang will receive the Humboldt Research Award, one of Germany’s most-prestigious prizes. Granted by the Alexander von Humboldt Foundation up to 100 times each year...
Explore this Story

Explore Carnegie Science

January 30, 2017

Stanford, CA—New work from Carnegie’s Shouling Xu and Zhiyong Wang reveals that the process of synthesizing many important master proteins in plants involves extensive modification, or “tagging” by sugars after the protein is assembled. Their work uncovers both similarity and distinction between plants and animals in their use of this protein modification. It is published by Proceedings of the National Academy of Sciences.

The blueprint for making all proteins is encoded in DNA. The genetic code tells the cellular protein-making apparatus the correct order in which to string together the amino acids that are the building blocks of every protein. Often, after their DNA code has

Carnegie Science, Carnegie Institution, Carnegie Institution for Science
December 14, 2016

Stanford, CA—Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our environment and food supply.

For many plants, even a small increase in average temperature can profoundly affect their growth and development. In the often-studied mustard plant called Arabidopsis, elevated temperatures cause the plants to grow longer stems and thinner leaves in order to cope with the heat stress.

New work led by Carnegie’s Zhiyong Wang uncovers the system by which plants regulate their response to heat differently between daytime and nighttime. It is published by

October 11, 2016

Stanford, CA—We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred between organisms.

Sometimes a “host” organism can obtain genes from another organism that resides within its own cell (called an endosymbiont) through a process known as endosymbiotic gene transfer. At other times, an organism can obtain genes from a creature that lives in the surrounding environment, or from something that it eats, which is called horizontal gene transfer.

Furthermore, some levels of gene transfer can result in extensive loss of genes and genome reduction,

October 4, 2016

Stanford, CA— A feature thought to make plants sensitive to drought could actually hold the key to them coping with it better, according to new findings published by eLife, from Kathryn Barton of the Carnegie Institution for Science (Department of Plant Biology).

 Plants that are resistant to the hormone abscisic acid (ABA) have until now been understood to be bad at coping with drought. However, Barton and her team have now discovered ABA-resistant varieties that grow better than their normal neighbors when water is scarce. The new research suggests breeders should explore them for “stay green” traits.

 “When breeders are looking for plants able to withstand drought, they

No content in this section.

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions to genes for which no function had

Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of what its genes do and how or why they do it. And understanding this evolution can help develop new crop strains to adapt to climate change.  

Sue Rhee wants to uncover the molecular mechanisms underlying adaptive traits in plants to understand how these traits evolved. A bottleneck has been the limited understanding of the functions of most plant genes. Rhee’s group is building genome-wide

One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for developing crops for the changing climate.

The Dinneny  lab focuses on understanding how developmental processes such as cell-type specification regulate responses to environmental change. Most studies have considered the organ or even the whole organism as a single responsive unit and ignore the potential diversity of responses by the various cell-types composing an organism. Dinneny has

It’s common knowledge that light is essential for plants to perform photosynthesis—converting light energy into chemical energy by transforming carbon dioxide and water into sugars for fuel. Plants maximize the process by bending toward the light in a process called phototropism, which is particularly important for germinated seedlings to maximize light capture for growth. Winslow Briggs has been a worldwide leader in unraveling the molecular mechanisms behind this essential plant process.

Over a decade ago Briggs and colleagues discovered and first characterized the photoreceptor family that mediates this directional response and named the two members phototropin 1 and

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an interior