Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Stanford, CA— Four additional members of Stanford University’s faculty have been named Honorary Adjunct Staff Scientists at Carnegie’s Department of Plant Biology. Stanford’s...
Explore this Story
Carnegie Science, Carnegie Institution, CRISPR, CRISPR/Cas, CRISPR/Cas9, Devaki Bhaya
Stanford, CA— You’ve probably seen news stories about the highly lauded, much-discussed genome editing system CRISPR/Cas9. But did you know the system was actually derived from bacteria,...
Explore this Story
Stanford, CA— During the daytime, plants convert the Sun’s energy into sugars using photosynthesis, a complex, multi-stage biochemical process. New work from a team including Carnegie...
Explore this Story
Washington, DC— More than 1,000 scientists from nonprofit, corporate, academic, and private institutions say public doubts about genetically modified food crops are hindering the next Green...
Explore this Story
Stanford, CA—Carnegie’s Alexander Jones will receive the Tansley Medal for Excellence in Plant Science. The honor includes publishing a short review, an editorial written about his work...
Explore this Story
Stanford, CA—Everyone who took high school biology learned that photosynthesis is the process by which plants, algae and select bacteria transform the Sun's energy into chemical energy...
Explore this Story
Stanford, CA— Once a mother plant releases its embryos to the outside world, they have to survive on their own without family protection. To ensure successful colonization by these vulnerable...
Explore this Story
"I started to wonder if I could design a course that encouraged freshmen to recognize the beauty and wealth of trees on campus? Could I meld my curiosity about the trees and rejuvenate my rusty...
Explore this Story

Pages

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is...
Explore this Project
Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director...
Explore this Project
Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts...
Meet this Scientist
One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the...
Meet this Scientist
Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20%...
Meet this Scientist
You May Also Like...
AudioStanford, CA—Soil is a microscopic maze of nooks and crannies that hosts a wide array of life. Plants explore this environment by developing a complex branched network of roots that tap into...
Explore this Story
Stanford, CA— Coral reefs are tremendously important for ocean biodiversity, as well as for the economic and aesthetic value they provide to their surrounding communities. Unfortunately they have...
Explore this Story
Washington, DC— Carnegie’s Zhiyong Wang will receive the Humboldt Research Award, one of Germany’s most-prestigious prizes. Granted by the Alexander von Humboldt Foundation up to 100 times each year...
Explore this Story

Explore Carnegie Science

A bright field image of the anemone Aiptasia populated with its symbiotic algae.
December 6, 2018

Stanford, CA—How much of the ability of a coral reef to withstand stressful conditions is influenced by the type of algae that the corals hosts?

Corals are marine invertebrates from the phylum called cnidarians that build large exoskeletons from which colorful reefs are constructed. But this reef-building is only possible because of a mutually beneficial relationship between the coral and various species of single-celled algae called dinoflagellates that live inside the cells of coral polyps.

The algae are photosynthetic—meaning capable of converting the Sun’s energy into chemical energy for food, just like plants. And the exchange of nutrients between the

Devaki Bhaya
October 5, 2018

Palo Alto, CA—Carnegie’s Devaki Bhaya has been named a Fellow of the California Academy of Sciences. She is one of 14 new members selected as “partners and collaborators in the pursuit of the Academy mission to explore, explain, and sustain life.”

At Carnegie’s Department of Plant Biology Bhaya studies how photosynthetic microorganisms are affected by environmental stressors such as light, low nutrient availability, and viruses. Her research on speciation in the microbial mats of Yellowstone National Park is providing insights into how microbial populations communicate, evolve, and share resources. These findings offered a first glimpse into the

April 9, 2018

Palo Alto, CA—Senior scientist Arthur Grossman of Carnegie’s Department of Plant Biology was part of a team* awarded a three-year grant, with $100,000 for each year, from the International Human Frontier Science Program (HFSP) Organization. The team will use an integrated approach to investigate how light and metabolic signals control photosynthetic processes in algae.  

HFSP’s collaborative research grants are given for endeavors that address “complex mechanisms of living organisms.” The program only supports “cutting-edge, risky projects” conducted by globally distributed teams.

Grossman has been studying algae for years.

February 16, 2018

Stanford, CA—Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients.  New work from Carnegie and Stanford University’s José Dinneny shows that one of these challenges, salinity, can cause root cells to explode if the risk is not properly sensed. The findings, published by Current Biology, could help scientists improve agricultural productivity in saline soils, which occur across the globe and reduce crop yields.

Salts build up in soils from natural causes, such as sea spray, or can be introduced as a consequence of irrigation and poor land management. Salinity has deleterious effects on plant health and

No content in this section.

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for developing crops for the changing climate.

The Dinneny  lab focuses on understanding how developmental processes such as cell-type specification regulate responses to environmental change. Most studies have considered the organ or even the whole organism as a single responsive unit and ignore the potential diversity of responses by the various cell-types composing an

Plants are essential to life on Earth and provide us with food, fuel, clothing, and shelter.  Despite all this, we know very little about how they do what they do. Even for the best-studied species, such as Arabidopsis thaliana --a wild mustard studied in the lab--we know about less than 20% of what its genes do and how or why they do it. And understanding this evolution can help develop new crop strains to adapt to climate change.  

Sue Rhee wants to uncover the molecular mechanisms underlying adaptive traits in plants to understand how these traits evolved. A bottleneck has been the limited understanding of the functions of most plant genes. Rhee’s group is

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in

Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve, share resources. To these ends, she focuses on one-celled, aquatic cyanobacteria, in the lab with model organisms and with organisms in naturally occurring communities.

 Phototaxis is the ability of organisms to move directionally in response to a light source.  Many cyanobacteria exhibit phototaxis, both towards and away from light. The ability to move into optimal light