Stanford, CA — The Plant Metabolic Network (http://www.plantcyc.org/), which is based at Carnegie’s Department of Plant Biology, has launched four new online...
Explore this Story
Washington, D.C. — Plant science is key to addressing the major challenges facing humanity in the 21st Century, according to Carnegie’s David Ehrhardt and Wolf Frommer. In a Perspective published in...
Explore this Story
Stanford, CA—The major difference between plant and animal cells is the photosynthetic process, which converts light energy into chemical energy. When light isn’t available, energy is generated by...
Explore this Story
Stanford, CA— Along with photosynthesis, the plant cell wall is one of the features that most set plants apart from animals. A structural molecule called cellulose is necessary for the manufacture of...
Explore this Story
Stanford, CA— Plant's leaves are sealed with a gas-tight wax layer to prevent water loss. Plants breathe through microscopic pores called stomata (Greek for mouths) on the surfaces of leaves. Over 40...
Explore this Story
Stanford, CA— Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world’s most efficient mining companies. Roots live in darkness and direct the activities of...
Explore this Story
  Stanford, CA – Scientists at Carnegie’s Department of Plant Biology have made the first real-time observations of sugars in the cells of intact and living plant tissues. With the...
Explore this Story

Pages

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga ...
Explore this Project
Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also...
Meet this Scientist
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018. Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants...
Meet this Scientist
You May Also Like...
Stanford, CA — Plants grow upward from a tip of undifferentiated tissue called the shoot apical meristem. As the tip extends, stem cells at the center of the meristem divide and increase in numbers....
Explore this Story
Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients. New work from Carnegie and Stanford University’s José Dinneny shows that...
Explore this Story
Carnegie plant biologists Sue Rhee and David Ehrhardt will lead one of 25 teams awarded a total of $64 million this week by the U.S. Department of Energy to pursue genomic research of...
Explore this Story

Explore Carnegie Science

Illustration of a plant growing on a computer chip purchased from Shutterstock.
June 13, 2022

Palo Alto, CA— New work led by Carnegie’s Zhiyong Wang untangles a complex cellular signaling process that’s underpins plants’ ability to balance expending energy on growth and defending themselves from pathogens. These findings, published in Nature Plants, show how plants use complex cellular circuits to process information and respond to threats and environmental conditions.  

“Plants don’t have brains like us, and they may be fixed in place and unable to flee from predators or pathogens, but don’t feel sorry for them, because they’ve evolved an incredible network of information-processing circuits that enable them to ‘

Chlamydomonas photo courtesy of Natasha and Natalie Rothhausen.
June 13, 2022

Palo Alto, CA— New work led by Carnegie’s Petra Redekop, Emanuel Sanz-Luque, and Arthur Grossman probes the molecular and cellular mechanisms by which plants protect themselves from self-harm. Their findings, published by Science Advances, improve our understanding of one of the most-important biochemical processes on Earth.  

Plants, algae, and certain bacteria are capable of converting the Sun’s energy into chemical energy through a process called photosynthesis. It underpins our entire food chain and is responsible for the oxygen-rich nature of our atmosphere.

“In other words, life as we know it couldn’t exist without photosynthesis,

Paulinella micrograph courtesy of Eva Nowack.
June 8, 2022

Palo Alto, CA— About 1.2 billion years ago a blue-green bacterium was engulfed by a more complex cell, transforming our planet and allowing a tremendous diversity of plant life to emerge and continue to evolve.

The engulfed cyanobacterium—sometimes called blue-green algae, because of its characteristic pigments —was capable of performing a process called photosynthesis, by which the Sun’s energy can be converted into chemical energy. At first, its relationship with the more-complex cell was symbiotic. It supplied the food and the other cell provided protection. Over time, however, much of the photosynthetic bacterium’s genetic material was transferred

Stylized image of a young Arabidopsis leaf by Flavia Bossi
June 7, 2022

Palo Alto, CA— Organisms grow to fit the space and resources available in their environments, leading to a vast diversity of body sizes and shapes within a population of the same species. What are the genetic and physiological mechanisms that determine how big an organism can grow?

In insects and mammals, the cellular and molecular factors underpinning body size are well established. But in plants, this process has puzzled scientists for generations. How a plant controls the size to which it grows is a fundamental part of its developmental processes and impacts its likelihood of success in a particular environment.

“It is crucially important to understand how

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Evolutionary geneticist Moises Exposito-Alonso joined the Department of Plant Biology as a staff associate in September 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex

Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching and the impact of temperature and light on the bleaching process.

He also has extensively studied the blue-green algae Chlamydomonas genome and is establishing methods for examining the set of RNA molecules and the function of proteins involved in their photosynthesis and acclimation. He also studies the regulation of sulfur metabolism in green algae and plants.  

Grossman

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an